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ABSTRACT

This report presents a simple and rapid method for predicting the
nonlinear response and stiffener separation of postbuckled, flat,
composite, shear panels. The method uses modular, “strength-of-
materials-type” models. The disbonding failure is hypothesized as being
due to a stress concentration in the surface layer of the skin immediately
under the toe of the attached flange. The highly local character of this
stress, which renders a finite element analysis impractical, enables a
simple analysis to be developed. The maximum principal tensile stress in
the skin surface layer under the toe is determined, and failure is said to
occur when this stress reaches the mean transverse tensile strength of
the layer.

The analysis consists of a number of closed-form equations that
have been programmed into a preliminary design code called SNAPPS
[Speedy Nonlinear Analysis of Postbuckied Panels in Shear], which rapidly
predicts the panel’s postbuckling response and failure load. SNAPPS was
applied to three test panels with widely different geometries, laminates
and stiffnesses. At the test failure loads, the predictions of maximum
principal tensile stress at the toe vary from 8% below to 20% above the
transverse tensile strength. The predicted failure loads range from 18%
below to 25% above the test failure loads.

Using the B-basis allowable stress, which is 62% of the mean
transverse tensile strength, the predicted allowable load for each panel
was consistently found to be about half the test failure load. In view of
the scatter experienced in matrix-dominated modes of failure in
composite materials, these are reasonable, but not excessively
conservative predictions.

A new method was developed for determining experimental buckling
loads for shear panels. The method uses the "diagonal tension factor”, Kk,
for which a closed-form expression was derived. An unambiguous
estimate of the initial buckling load can be obtained by plotting k against
load, and extrapolating back to the load at which k is zero.

The report also gives design recommendations for reducing the
maximum principal tensile stress at the toe, thereby increasing the
panel’s load carrying capacity. Results from an approximate but accurate
parametric analysis imply this is best accomplished by decreasing the
skin thickness, increasing the flange width, and by decreasing the bending
stiffness of the combined stack of the skin and attached flange.
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SECTION 1
INTRODUCTION

There is a need for a simple, rapid prediction of stiffener separation
in postbuckled, flat, composite shear panels in which the stiffeners are
bonded to the skin. Analysis and test evidence point to the failure being
caused by a highly localized stress in the skin immediately under the toe
of the attached flange of the stiffener. To locate and quantify this stress,
a finite element model would have to be exquisitely detailed and may not
be practical in real terms, particularly if it has to be re-done at each
design change. Fortunately, the extreme localization of the stress enables
the development of a simplified method of analysis.

1.1 Methodology

The analysis described in this report began with the premise that
the physical behavior of a highly buckled, stiffened shear panel could be
described by simple equations culled from standard texts. The challenge
was to get a physical understanding of the panel behavior as it progressed
into the postbuckled regime. Two key aids to this understanding came
with a series of panels tested by Grumman [Visconti, 1988], followed by a
detailed finite element analysis [Sobel and Sharp, 1994] of one test panel,
denoted as C1. That analysis used the STAGS code [Almroth, et al.,, 1982]
to perform a buckling analysis and then a nonlinear analysis up to the test
failure load of fifteen times initial buckling.

The analysis developed here consists of a number of closed-form
equations that can easily be used in a "hand analysis". For expediency,
they have been programmed using the True Basic language into a code
called SNAPPS [Speedy Nonlinear Analysis of Postbuckled Panels in Shear],
which rapidly predicts the postbuckling response and failure load of the
panel. The model used is similar to that of Tsai [1983], where strips of
the skin and stiffener parallel to the diagonal tension field are idealized
as beams and tie-rods. We depart from Tsai’s analysis in the derivation
of the out-of-plane displacement, in the idealization of the combined skin
and flange, and in the failure criterion. For the latter, we compute a
highly localized stress in the skin immediately under the toe of the flange
and relate it to the transverse tensile strength of the skin ply, while Tsai
uses an overall pull-off load which is geometry-dependent and has to be
determined empirically for each configuration.
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e Development Phases

The development of SNAPPS can be divided into three phases:

The first phase drew heavily on the methods of Kuhn [1952], Wagner
(described in Kuhn [1952]), and Ranalli and Bunce [1977], for the analysis
of stiffened aluminum panels in which the stiffeners were riveted to the
panel. Ranalli and Bunce's analysis focused on overall pull-off loads
between the skin and flange. This concept was carried over to a test
program for stiffened composite panels, test coupons, and elements, as
described by Visconti [1988]. Their analysis, when modified to include the
twisting moment between the skin and flange in addition to the pull-off
load [Sharp and Sobel, 1989] gave satisfactory agreement with test
failure loads, but required element tests specific to the test panel, and
these showed adhesive failures. In contrast, the panel tests revealed
intra-ply failures of the skin immediately under the toe of the flange, as
evidenced by the pull-out of fibers from the surface layer of the skin.
This observation led to the realization that the flatwise tensile strength
in the laminate was the key to the failure.

- The second phase began with an analysis of the through-the-
thickness tensile stress in the skin immediately under the toe (Sharp
[1989] and Sobel [1990]). The model used was developed during Grumman’s
CTSA program [Cacho-Negrete, 1978], and consists of two beams, one
representing the skin and the other the attached flange, joined by an
elastic foundation. The analysis revealed peel stress concentrations
under the heel and toe of the flange. These stresses die away within short
distances, and do not significantly interact with each other, enabling a
great simplification in the equations. In this second phase, the stress
state in the postbuckled skin was assumed to be given by Kuhn's empirical
theory of incomplete diagonal tension, and the width of the buckle was
determined empirically from moire” fringe patterns. :

The third phase took account of the immense amount of data
available from the STAGS analysis of panel C1, Sobel [1990], together
with a more detailed interpretation of strain gauge readings and moire”
fringe patterns for the three test panels. From these, it was found that a
reasonably accurate estimate of the stress resultants in the flat panel
after buckling could be obtained by assuming (1) a diagonal tension angle
of 45° and, (2) that the compressive stress resultant reaches a value equal
to the buckling shear flow and does not increase further. The buckle width
could now be determined analytically by isolating one buckle and imposing
equilibrium on the out-of-plane components of the membrane stress
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resultants. All of the empiricism in the earlier analysis was thereby
removed.

e Failure Criterion

It is hypothesized that the failure is located in the skin layers
immediately under the toe of the flange, and is caused by the maximum
principal tensile stress in the layers (Sharp [1989] and Sobel [1990]).
This stress is a combination of three stresses, all of which peak at the
toe, in the outermost skin layer on the stiffener side of the panel whose
fibers are normal to the diagonal tension fold. They are (1) an extremely
localized peel stress, (2) an interlaminar shear stress, and (3) an inplane
tensile stress in the direction of the diagonal tension fold. The
combination of these three stresses makes the toe location critical: at the
heel, the peel stress is higher, but the combination of the three stresses
gives a lower principal stress there. The failure criterion adopted here
equates the maximum principal tensile stress based on these three
components to the transverse tensile strength of the skin layers.

o Assessment of Method

An assessment of the accuracy of the simplified method is achieved
by applying the SNAPPS code, described in Appendix M, to the three panels
manufactured and tested by Grumman [Visconti, 1988]. The predictions
are compared to those of a nonlinear STAGS finite element analysis [Sobel
& Sharp, 1994], and to strain gauge and moire” fringe readings taken during
the tests. SNAPPS predictions for the out-of-plane displacement,
wavelengths, and skin stress resultants were found to agree well with
both test measurements and STAGS results. While the intensely localized
state of stress at the toe cannot be directly compared to the STAGS
results, nor can it be determined from the test .results, relating its
predicted maximum principal tensile value to the transverse tensile
strength of the skin layers provides estimations of the panel strength that
are in reasonably good agreement with the test failure loads.

1.2 Structure of Report

This report consists of a number of sections and appendices, with
details of the derivations of the governing equations used in SNAPPS being
relegated to the appendices. The governing equations and computational
procedure are summarized in Section 2, and coded in appendix M. Section 3
compares SNAPPS predictions for the three test panels with test
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measurements and STAGS results, and Section 4 gives conclusions,
lessons learned and recommendations.

The key elements of SNAPPS involve calculation of the following:

¢ The stress resultant state in the postbuckled skin (Appendix C),

® The buckle width and length (Appendix D),

e The maximum out-of-plane displacement (Appendix E),

e The “tie-rod” analysis of a strip of skin (Appendix F),

¢ The skin bending moment at the toe of the flange from
compatibility of rotation between the tie-rod model and the
combined skin and flange model at the toe of the flange
(Appendix G),

¢ The maximum shear stress at the toe (Appendix H),

¢ The tensile peel stress between the skin and the toe of the flange,
based on a simplified "coupled beams on an elastic foundation"
analysis (Appendix [),

¢ The inplane transverse tensile stress in the critical ply, which is
the outermost skin ply whose fibers are normal to the diagonal
tension fold (Appendix K),

e The combining of the peel stress, the maximum shear stress and
the transverse tensile stress under the toe to obtain the maximum
principal tensile stress in the surface layer of the skin
(Appendix L), :

¢ Failure, which is identified as value of the applied shear flow at

which the maximum principal tensile stress reaches the
transverse tensile strength of the critical ply (Appendix L).
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SECTION 2

DESCRIPTION OF ANALYSIS & COMPUTATIONAL PROCEDURE

2.1 Description of Analysis

The analysis described here is based on four major insights gained
from the test results and the STAGS analysis:

(1) That the angle of the diagonal tension fold remained almost
constant at between 450 and 489 to the normal to the stiffener.

(2) That the stress resultants in the skin after buckling could be
simply described in the terms of the applied shear flow and the
buckling shear flow without recourse to empiricism.

(3) That the buckles grew steadily in the skin as the load increased
above buckling by narrowing the width of the buckie. This
observation identified the aspect ratio and maximum out-of-plane
displacement of the buckle as key parameters in the analysis.

(4) That the failure was localized under the toe of the attached
flange of the stiffener, enabling a simplification of the CTSA
[Cacho-Negrete 1978] analysis to be used to calculate the tensile
peel stress in the skin under the toe.

Based on these insights, a simplified computational procedure was
developed that uses strength-of-materials-type models. The first step in
the procedure is to calculate the buckle width and length as a function of
the applied shear flow. Next, the maximum out-of-plane displacement is
computed. From this, the bending moment and transverse shear force in the
skin immediately under the toe of the stiffener flange are determined. With
these internal loads at the toe region, the analysis proceeds to the
calculation of three stresses, 1Txz, Oz and Oy, all of which peak at the
surface of the skin under the toe of the flange. They are defined in the xz
plane, where x is in the direction of the diagonal tension fold and z is
normal to the original plane of the skin. The shear stress, 7Txz, arises from
the transfer of part of the diagonal tension load from the skin into the
flange, ©; is a tensile peel stress acting normal to the skin between the
skin and the flange, and ox is a tensile stress in the outermost ply on the
stiffener side of the panel whose fibers are normal to the direction of the
diagonal tension fold. Ox is induced by the membrane load and bending
moment in the skin immediately under the toe. Combining these stresses
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enables calculation of the maximum principal tensile stress in the critical
ply. Comparing this to the transverse failure stress of the ply allows a
prediction of failure to be made.

2.2 Governing Equations & Computational Procedure

in what follows, only the main equations are given. Detailed
derivations of the equations are in the referenced appendices, and a flow
chart of the various steps in the analysis procedure is given in Figure 1.

Note that the input to SNAPPS requires the membrane and bending
stiffnesses of the skin, flange and the combined skin and flange (where they
are bonded together to form a single stack). These have to be obtained from
the layer properties and stacking sequences, using an independent computer
code. We used MACLAMINATE [Flanagan, 1991], but any similar capability

will serve.

« Skin Stress Resultants

Next, the principal stress resultants in the buckled skin, except under
the toe of the flange, are determined from Appendix C as follows:

N1 = 29-Qer Eq. (7) of Appendix C
N2 = Qcr Eq. (5) of Appendix C

where Ni and N2 are principal tensile stress resultants parallel and normal,
respectively to the direction of the diagonal tension folds. Ny is positive
when it is in tension and N2 is positive when it is in compression. In these
equations, q is the applied shear flow, and q¢r is the shear flow at which
the skin buckles (q and qcr are always positive in this report). The buckling
shear flow q¢r may be estimated from standard procedures for orthotropic
plates, such as the Grumman Advanced Composites Structures Manual
(which is based on Seydel [1933]) or Housner and Stein [1975]. |f available,
the test buckling load or a STAGS (or similar) prediction can be used.

« Buckle Kinematics

~ The length, L, of the diagonal tension fold, measured along the fold
between the toes of the attached flanges of the stiffeners, see Figure 1 of
Appendix D, is given by

L = by/cosa
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where -
by = the toe-to-toe distance between the attached flanges of the

stiffeners, measured normal to the stiffener direction.

and
o = the angle between the diagonal tension fold and the normal to the
stiffener direction. It is assumed that o is constant at 45°.
The width of the buckle, ¢ in Figure 1 of Appendix D, is calculated
from
A
c=Vi5L/ Y N1_ Eq. (7) of Appendix D
/%
+ —
N1
The projected length of the buckle along the stiffener axis, Lb, is then
=_C .
Lp = Cos Ol Eq. (8) of Appendix D
. ximum -of-Plane Displ men

The amplitude of the out-of-plane displacement, Omax, is next
obtained from

Omax = -7%-1/ Lc ‘gfé%' Eq. (6) of Appendix E

where Gt is the in-plane shear stiffness of the skin, referred to axes
parallel and normal to the stiffener direction.

. in_th kin he Toe of the A hed Flan

The analysis now obtains the bending moment, Mice, and the transverse
shear, Wjpe, in the skin immediately under the toe of the flange. To do this,
a "tie-rod” model of the skin is connected to a beam model representing the
combined flange and skin between the stiffener centerline and the toe of
the flange. This is done by invoking rotational compatibility at the common
ends of the models. Both models are of unit width and lie along the diagonal
tension fold.

The "tie-rod" model of the skin is described in Appendix F. The beam
model of the combined skin and flange, which contains the total stacking
sequence of the flange, a layer of adhesive and the skin, is described in
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Appendix G. It is assumed to be cantilevered at the stiffener centerline,
and loaded at it's tip by Wipe and a moment given by (Mie - Nioez) The
second term, Nii0ez, represents the moment due to the membrane load in the
unbuckled skin at the toe being offset from the neutral axis of the combined
section by an amount, z, (see Figure 1 of appendix G) and is calculated from

N1itoe = q Eq. (10) of Appendix C
and
Et t t
f ts + ta +— + Etsr—s—
7 = 2 2 . ts Eq. (6) of Appendix G
Etfr + Etsr 2
where

ts = thickness of the skin

ti = thickness of the flange

ta = thickness of the adhesive layer between the skin and flange
Etsr = membrane stiffness of the skin

Et;y = membrane stiffness of the flange.

Etsr and Etsy are measured in the direction of the diagonal tension fold (as
denoted by the subscript r).

Mioe is given by

ﬂamgx(1 . L%rN1 )+Lfrq7-

Me = —L 2 Diotr Dgotr Eq. (10) of Appendix G
(k-n/L_,_ Lr + Lfr)
N1 Diotr 2 L Dtorr
and Wtoe by
Wice = 7f(m Smax + Mioe) Eq. (15) of Appendix G
where

= /N
Dsr

Li = Li/cosa, where Lf = the width of the attached flange of the -
stiffener, measured normal to the stiffener direction

and

Dgr = the bending stiffness of the skin about the inplane normal to the
diagonal tension fold
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Diotr = the bending stiffness of the combined skin and flange (where
they are bonded together to form a single stack). Diotr is
measured about the inplane normal to diagonal tension fold.

* Calculation of Stre in th ki h

The analysis now proceeds to the calculation of the three stresses
which combine to give the maximum principal tensile stress at the surface
of the skin under the toe. The stresses are defined in the xz plane, where x
is in the direction of the diagonal tension fold and z is normal to the
original plane of the skin, and are as follows:

The shear stress Txz at the interface between the skin and the flange
is calculated first. It arises from the transfer of part of the membrane
load from the skin into the flange and peaks in the surface ply under the toe.
From Appendix H, the maximum shear stress, which occurs under the toe, is
given by

Txz = N1toe K—EL— Eqg. (5) of Appendix H
Etfr + Etsr
where
K=\f (1 + 1 Eq. (4) of Appendix H
Oxz Etrr | Eter q. (4) PP
and
= 1
Oxz L(-t_ _,_(t_) +(4_) +1t_,
2\G13/flange 'Gladhesive 'Gial/tace 2'Glcore

Eq. (2) of Appendix J

In the equation for ¢xz, G denotes the shear modulus for the isotropic
adhesive and core materials. For the tape layers, it is simplest to use Gi3
for all layers regardless of orientation, while for fabric layers Gi3 = G12.

The peel stress ©; is a tensile stress acting normal to the skin face
between the skin and the flange. This stress has peaks at the toe and heel
of the flange, but we are concerned only with the peak at the toe in this
analysis. As described in Appendix |, 6z can be conveniently subdivided into
two parts: the first, Oy, is due directly to the moment Mioe and the
transverse shear Wige applied from the skin; and the second, G, is caused
by the shear along the interface between the skin and flange acting at half
the laminate thickness away from the midplane of each laminate. The two
parts of the peel stress are given by

2-5



Oz. = Gz1 + Oz

where
2P
Oy = Wige + P M
i Dsr/D")( toe + B Miog)
and
OG22 =Cntf 02 (F1 + Fo)
where
1/4
B - (¢_z Dsr + Dir)
4 Dsr Dsr

Cp = Nitoe K2 __Etyr
2 (bz Etfr + Etsr

Frof1o K2, K (m' Der‘-1)
2p2 2p3 0z

F727= 2 B Dfl’ (gsr/Dfr - ts/tf)
K Dfr + Dsr

mt o b2
Dsr Dy K4

Dsr K4 + ¢Z (1 + ts/tf))
K4+ 4 B4

and

= 1
SE e
2\Eslfiange ‘Eladhesive \E3lface 2'Fcore

Eqg. (21) of Appendix |

Eq. (22) of Appendix |

Eq. (1) of Appendix J

In these equations, Dy is the bending stiffness of the flange,
measured about the normal to diagonal tension fold, t denotes laminate
thickness, E is Young’s modulus for the isotropic adhesive and core
materials, and E3 is the out-of-plane modulus for the flange and skin layers
(by assuming transverse isotropy for tape layers, we may take E3 = Ep,

where E2 is the layer transverse modulus

The _tensile stress ox in the skin face is induced by the membrane
stress resultant and bending moment in the skin immediately under the toe
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of the flange. It acts in the direction of the diagonal tension fold, in the
"critical ply". The critical ply is defined by the following criteria: it has
to be on the stiffener side of the skin; it has to be put into tension, along
the diagonal tension fold, by the transverse shear Wice and the moment Mge
and: it's fibers are normal to the diagonal tension fold, i.e. 6x acts normal
to the fibers, and in the plane of, the critical ply. To be conservative, by
using the highest possible value of oy, the critical ply is assumed to be at
the surface of the skin. The force and bending moment are analyzed in
Appendix G. The derivation of oy is given in Appendix K, and results in the
following equation for oOx:

E2 q M :
ox = —=2—1(1-v4 ) (1 1s Moe} Eq. (7) of Appendix K
=T vieval] (1-v42) (1+ve) g+ 3 %) B (7) of Appendix

where
vsr = the Poisson's ratio of the skin in the xy axis system (vsr=Vxy
is defined according to vxy Ey = Vyx Ex, where Ex and Ey are the

engineering constants for the skin laminate),

and
E4, Ep, and vy are the in-plane Young's moduli and Poisson’s ratio
for the face ply of the skin. (The subscript 1, when affixed to a
material property, pertains to the fiber direction, and vq2 is defined
according to voq E1 = vqo E2).

. ximum_ Principal nsil r

The three stress components Txz, Gz and Ox are combined to give the
following expression for the maximum principal tensile stress in the
surface ply immediately under the toe:

- 2
Grmpt =(9—Zg—c") + \/ (“—22‘3) + (Txzf Eq. (1) of Appendix L

Examination of photomicrographs of ply cross sections shows that for
graphite/epoxy the placing of the fibers within such a section is random,
and it is impossible to discern the orientation of the photographed section
within the ply without other, external, clues. We may therefore assume
transverse isotropy, and that the tensile strength at any orientation in the

xz plane is equal to the transverse tensile strength F‘g“ of the layer.
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Failure is assumed to occur when the maximum principal tensile
stress in the skin immediately under the toe reaches the transverse tensile
strength of the layer, i.e., when

Ompt = F2 Eq. (2) of Appendix L

Failure of this layer constitutes failure of the joint, because cracking of
the matrix allows fibers to be pulled out of the skin surface. This type of
failure was observed on all of the panels tested.

The following values used in the analysis of the test panels are based
on statistical analysis of 19 coupon test results for transverse tension of
IM6/3501-6 graphite/epoxy tape, in the room temperature, ambient,
moisture (“dry”) condition [Shyprykevich, 1988]:

Fy' = Mean strength = 7150 psi
Standard Deviation = 1180 psi
"B-basis" allowable stress = 4460 psi

where the B-basis allowable strength is such that at least 90% of the

transverse tensile strengths are expected to exceed the B-basis allowable
value, with a confidence of 95%.
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SNAPPS INPUT : (Appendix M)
Specify Geometry, Material Properties, Stiffness, q,,

|

Specify the Applied Shear Flow, g, and Compute the Following:

\

Stress Resultants N;, N, (Appendix C)

\

Wavewidth, ¢ and Wavelength, L, (Appendix D)

Specify New Value of q

Maximum Out-Of-Plane Displacement, 3., (Appendix E)

Skin Bending Moment at Toe of Flange, M, .. and Transverse Shear Force

at Toe, W, (Appendix G)

Foundation Moduli, ¢, ¢,, (Appendix J)

y

Stress Components At Toe

Interlaminar Shear Stress Peel Stress Tensile Stress in Critical
Tys o, Ply, in DT Direction, O,
(Appendix H) (Appendix 1) (Appendix K)

Maximum Principal Tension Stress at toe, G, (Appendix L)

FIGURE 1 COMPUTATIONAL PROCEDURE
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SECTION 3
RESULTS AND ASSESSMENT OF METHODOLOGY

The computational procedure described in Section 2 has been
programmed, using the True Basic language, into a code called SNAPPS,
(Appendix M), which has been applied to three, flat, stiffened, composite
panels (A1, B1 and C1) tested at Grumman, as described in Appendix A.
The current section presents results pertaining to the SNAPPS
methodology, and assesses the accuracy of the SNAPPS predictions by
comparing them to the panel test results and STAGS predictions for panel
C1 [Sobel and Sharp, 1994].

3.1 Assessment of Basic Premises

The SNAPPS analysis is built around two basic premises: that the
angle of diagonal tension, «, is 45° (for flat panels), and that the
compressive stress resultant normal to the diagonal tension fold reaches
a value equal to the buckling shear flow, gcr, but does not increase beyond
that value as the panel is loaded into the postbuckling regime. The first
assumption implies that the principal stress tensile and compressive
resultants, Nj, and Np, line up with the diagonal tension folds at all load
levels, with Nq acting in the direction of the fold and N2 normal to it, and
the second assumption stems from the use of Wagner's model of the
buckled panel, see Kuhn [1952]. Inplane equilibrium then dictates the
value of Ni, which is derived in Appendix C. The validity of these
assumptions is assessed by comparing SNAPPS values for o, Ni and N2
with test and STAGS results for the three panels. This is done in Figures
1 through 4, with the caption of Figure 1 defining the location of the
strain gauges, and how the gauge measurements at these locations were
averaged to obtain the test values of o, N and N2. (The values of the test
failure loads and qcr appearing in the abscissas in the figures are given in
Appendix A).

Figure 1 compares the o = 45° assumption with measured and STAGS
results. The measured and predicted values of o all lie between 45° and
48° degrees from the normal to the stiffener, thereby justifying this
assumption.

Figures 2, 3 and 4 plot the principal stress resultants for the three
panels against q/qcr. Test results are given together with predictions
based on the SNAPPS model and STAGS (for C1 only). Also included are
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results from Kuhn's [1952] model based on an empirical expression for the
diagonal tension factor, k, obtained from tests on aluminum panels. The
figures reveal that the simplified SNAPPS approach gives stress
resultants that are in reasonable agreement with the measured and STAGS

results.

From Figures 1 through 4 it is concluded that the basic premises
used in the SNAPPS analysis correlate well with the test and STAGS
results. SNAPPS results stemming from these basic premises are
compared next with test and STAGS for both global (kinematic) and local
(stress) response variables.

inematic Variable

SNAPPS computes the buckle (half) wavelength projected along the
stiffener direction, Lp, (Appendix D) and the maximum out-of-plane
displacement, dmax (Appendix E). Normalized values of these kinematic
variables are compared next with test and STAGS results to provide a
"global" check on the SNAPPS methodology.

Figure 5 gives the variation of Lp with the dimensionless load level
a/qcr- Lb, is normalized with respect to the toe-to-toe distance, by,
measured normal to the stiffener direction. This distance is shown in
Figure 1 of Appendix D, and the SNAPPS expression for Lp/ by is given by
Eqg. (10) of that appendix. Included in the figure are wavelengths measured
from moire” photographs taken during the loading to failure for panels A1
and C1, and wavelengths predicted by the STAGS analysis for C1, and
Timoshenko’s [1961] “end point (g/qcr =1)" buckling solution through
which the SNAPPS prediction was forced to pass (see Appendix D). The
figure demonstrates that the simple SNAPPS model used to determine the
wavelength gives results that agree quite well with the measured and
STAGS results.

Figure 6 shows the variation with a/gcr of §max, Which is normalized
with respect to LYycr, where L is the toe-to-toe distance between
flanges, measured along the length of the diagonal tension fold (see Figure
1 of Appendix E), and Ycr is the critical shear strain corresponding to Qer.
The SNAPPS expression for LYycr is given by Eq. (8) of Appendix E. The
test results in the figure are based on moire” fringe patterns photographed
at various load levels during the tests of panels A1 and C1 (panel B1 was
the earliest tested and was not instrumented for moire” fringe
measurements). The test set-up for the Shadow Moiré' Method of obtaining
out-of-plane displacements in the buckled panel is described in Visconti
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[1988]. The SNAPPS predictions based on the simple model of Appendix E
somewhat overpredict §max, but this discrepancy is judged acceptable
within the framework of a simplified, preliminary design, analysis tool.

Taken together, Figures 1 through 6 engender a sense of confidence
that the basic premises underlying the SNAPPS procedure are physically
realistic, and are valid even at postbuckling load levels of fifteen times
initial buckling (which corresponds to the failure load level for panel C1).

33 A men | Prediction re Variables

The final check involves using SNAPPS to predict the maximum
principal tensile stress, Ompt, immediately under the toe of the flange,
and comparing this stress to the transverse tensile failure stress of the
skin ply. This stress is highly localized and cannot be verified, either by
the tests or STAGS results. However, if we get reasonable predictions for
the failure loads for the three panels, then we may reasonably conclude
that the methodology is valid, at least within the range of parameters for
the tested panels, for the purpose of providing a preliminary design tool.
The comparisons are made in two ways, the results of which are
summarized in Tables 1 and 2.

Corresponding to the test failure load for each of the three tested
panels, Table 1 compares Ompt with the mean transverse tensile strength,

thu, which is taken as the failure criterion, as described Section 2 and
Appendix L. For the IM6/3501-6 Graphite/Epoxy material in the room

temperature, ambient moisture content condition, thu = 7150 psi (see
Appendix L). Table 1 shows that Omptdiffers from the mean strength by an
average of 12.9%. It can be shown that the calculated values of Ompt are

approximately within one standard deviation from the mean value of F'2”.

The SNAPPS code can also be used to predict the failure shear flow.
To do this, the code is run with a succession of values of the applied shear
flow until the predicted maximum principal tensile stress at the toe
reaches the mean strength of 7150 psi. The results so obtained are
displayed in Table 2, from which it is seen that the predicted failures
differ from the test failures by an average of 18.3% (based on absolute
differences, using algebraic differences gives -2%). This is a higher
percent difference than the 12.9% obtained in the previous table, because
Ompt varies nonlinearly with g.
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Table 2 also gives SNAPPS predictions of the allowable load for each
panel based on the "B-basis” allowable of 4460 psi, (which is 62% of the
mean failure stress of 7150 psi, see Appendix L). It is observed that the
predicted allowable loads for the three panels are consistently about half
the test failure load. These predicted allowable loads are reasonably but
not excessively conservative, in light of the nonlinear nature of the
problem, and the variability in the matrix-dominated strength.

Tables 1 and 2 give SNAPPS results for Omp; for two load levels, one
corresponding to the test failure load for each panel, and the other
corresponding to the load level at which SNAPPS predicts failure to occur.
The SNAPPS predictions for Ompt for a range of load levels, are displayed
in Figures 7 to 9 for the three panels, which also serve to summarize the
foregoing results of Tables 1 and 2. The SNAPPS predictions for the
maximum principal tensile stress under the toe are seen to vary
nonlinearly with load, thereby demonstrating that the simple models used
in SNAPPS capture the basic geometric nonlinear behavior of the
postbuckled shear panels.



TABLE 1

SNAPPS PREDICTIONS FOR THE MAXIMUM PRINCIPAL
TENSILE STRESS AT THE TEST FAILURE LOAD FOR EACH OF THE
THREE TESTED PANELS.

Values of ompt Relative to
Mean Strength

Panel |Predicted Max Prin % Diff Relative to Mean
Stress at toe, psi Strength (7150 psi)
A1l 8597 20.2
B1 7893 10.4
C1 6580 -8.0
Avg % Diff of Absolute 12.9

TABLE 2 SNAPPS FAILURE AND ALLOWABLE LOAD PREDICTIONS
FOR EACH OF THE THREE TESTED PANELS.

Panel |Test Failure|Predicted % Diff of |Allowable|Ratio of
Load, ppi Failure Predicted [ Shear Allowable
Load, ppi Load w.r.t{Filow (B- |[Load to Tes1
Test basis), Failure Load
Failure ppi
Load
A1l 1403 1149 -18.1 791 .56
B1 838 735 -12.3 451 .54
C1 962 1199 24.6 468 .49
Avg % Diff of 18.3
Absolute
Values of
Predicted
Failure Load
w.rt to Test
Failure Load
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SECTION 4

CLOSING REMARKS

4.1 Summary and Conclusions

We have attempted, using a simple "strength-of-materials”
approach, to develop a preliminary design tool for rapidly analyzing the
very complex nonlinear problem of the postbuckling behavior and failure of
flat, stiffened, composite shear panels.

The analysis is based on the premise that the physical behavior of a
highly buckled, stiffened shear panel can be described by simple, closed-
form, equations using the insights gained from a series of panels tested
by Grumman, and the subsequent correlation of the test results with
STAGS nonlinear finite element results for one of the panels.

The analysis method has been programmed, using the "True Basic"
language, into a code called SNAPPS ("Speedy Nonlinear Analysis of
Postbuckled Panels in Shear"), which is a simple and fast preliminary
design tool for predicting failure and postbuckling behavior of composite
shear panels with bonded stiffeners. The code is written in a modular
form so that it may be easily modified by the user if new test data or
physical insight makes modification desirable. Each module of the code is
the subject of an Appendix in this report.

Confirmation of the validity of the basic premises of the method has
been gained by comparing its predictions with test results for the three
panels, A1, B1, and C1, and with the nonlinear finite element analysis
results obtained from STAGS for panel C1 only. We are encouraged that
the SNAPPS predictions for the skin’s diagonal tension stress resultants
and out-of-plane deflections (i.e., the large-scale behavior of the panel)
agree well with test results for these panels of widely different
geometries and stiffnesses, and with the STAGS predictions.

However, the failure criterion adopted - that failure occurs when
the maximum principal tensile stress in the skin under the toe of the
stiffener flange exceeds the transverse tensile strength of the surface
plies - cannot be confirmed, either by test measurements or by finite
element analysis. Indirectly, it is judged by comparing the test failure
loads of the A1, Bi1 and C1 panels with SNAPPS predictions based on the
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mean strength of 19 transverse tensile test coupons. The predictions of
failure for the two-stiffener panels, A1 and B1, are 18% and 12% below
the test failures respectively, i.e. on the conservative side. For panel C1,
the predicted failure load is about 25% above the test failure load, i.e.,
unconservative. The mean (algebraic) error is 2%. We contend that the
failure criterion is physically realistic, and that the failure mode is
correctly identified, and feel this conclusion is confirmed by Minquet and
O'Brien [1996] in their analysis of stiffener pull-off specimens. It is
worthy of note that their analysis of the maximum principal tensile
stress at failure for four different specimens gave values ranging from
6600 psi to 7300 psi for the same IM6/3501-6 graphite/epoxy material
used in our tested panels and for which we used an average transverse
tensile strength of 7150 psi. Never the less, we must admit that our data
base is too small for comfort because of the large amount of scatter,
although this is typical of matrix dominated failures.

The B-basis allowable transverse tensile strength is 4460 psi,
much lower than the mean value of 7150 psi (allowable = 62% of mean),
reflecting the wide scatter of a matrix-dominated failure in
graphite/epoxy, which is made worse by the small sample size. The
prediction of allowable shear flows for all three panels is consistent, at
56%, 54% and 49% of the test failure loads for A1, B1 and C1 respectively.
We feel that these are reasonably, but not excessively, conservative in
view of the matrix-dominated nature of the failure, and the small data
base.

SNAPPS requires much more work for its complete validation. Its
predictions need to be compared with test results for other panels. A
larger, statistically significant, data base of transverse tensile strengths
needs to be acquired, and applied to a wider range of test panels.
Meanwhile, SNAPPS should be useful in performing trade studies, with the
understanding that any design obtained from the trade- studies should be
verified by test and/or a detailed analysis.

4.2 Limitations

The method was developed for flat, stiffened, composite panels
loaded in shear only. The skin is assumed to be a balanced and symmetric

laminate.

There must be a sufficient number of stiffeners so that the aspect
ratio of a skin-bay between the toes of the stiffener flanges is large
enough to allow a number of buckles to develop, ensuring that end effects
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do not dominate the buckle pattern, and that the out-of-plane deformation
of the diagonal tension fold is symmetric about the midlength of the fold,
as is assumed in the SNAPPS analysis (the STAGS results for panel C1
show that such symmetry is not the case for this single stiffener panel —
see Figure 2 of Appendix G).

The stiffeners are assumed to have sufficient bending stiffness to
prevent the diagonal tension folds from progressing across the stiffener
centerlines. The user is alerted that the analysis assumes zero rotation
of the skin at the stiffener centerline in the diagonal tension direction
(see Figure 1 of Appendix G). This is correct for stiffeners made up of
back-to-back channels or angles, and may reasonably apply to sturdy
"hat"-sections. The applicability of the code to unsymmetric sections
such as single angles or Z-section stiffeners has not been verified, nor
has it been applied to non-sandwich composite skins, or metallic panels
with bonded-on stiffeners.

The Wagner model [see Kuhn 1952] for the principal stress
resultants in the diagonal tension folds has been used in this analysis
because it gave good agreement with the measured and STAGS skin stress
resultants, and it enabled the removal of undesirable empiricism from the
analysis. This model should be checked against other test results.

Further, because of the assumption that the principal stress
resultants line up with the diagonal tension folds, and that the angle of
diagonal tension is 45°, the method cannot be applied to curved panels.

It is to be recalled that the allowable and mean transverse tensile
strength values for the graphite/epoxy face ply material for the tested
panel's are based on a limited data base (see Appendix L). Thus, the values
of the SNAPPS predictions for the allowable and failure loads may suffer
accordingly. : '

4.3 Lessons Learned & Designh Implications

Particular care needs to be taken with sign conventions, stacking
sequence "clocks" on drawings, and load directions with respect to the
structural axes (parallel and normal to stiffeners). Changes in stacking
sequence or load direction relative to the structural axes on the drawing,
resulting from manufacturing errors or changes in load spectrum, may
have significant effects on initial buckling and failure. For thin skins, the
initial buckling load is markedly effected by the sign of the shear load,
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and by orthotropy and/or anisotropy in the skin, as is well illustrated in
Figure 17 of Nemeth [1997].

While the stiffener must be sturdy enough to prevent the
diagonal tension folds from progressing across the stiffener centerlines,
the resistance to stiffener disbonding can be improved by reducing the
moment in the skin immediately under the toe of the flange, thereby
lowering the value of the maximum principal tensile stress. The moment
is lower when the entire attached flange is flexible, but, because the
stress components which make up the maximum principal tensile stress
die away rapidly from the toe, the same effect may be achieved by
tapering the flange locally at the toe, instead of the square edge we
tested. Minquet and O'Brien [1996] have shown that trimming the flange
edge to a 20° wedge angle at the toe gives a significant improvement in
the load-carrying capability of the skin-stiffener joint. The taper may
also be achieved by dropping internal plies in the stacking sequence of the
flange, but this may cause problems in tooling because a terminated ply
has to be prevented from moving during the cure cycle and because a resin
pocket is created at it's end.

4.4 Recommendations

To further verify SNAPPS and to suggest possible refinements to it,
SNAPPS should be applied to other test panels, particularly those without
sandwich skins, those with many stiffeners and those tested in different
fixtures.

The models used in the various steps in the computational procedure
are quite simple. Further development should concentrate on refinement
of some of these models, particularly those associated with the transition
region at the nose of the buckle where the diagonal tension field stress
resultants in the buckled panel have to be transformed into a complex set
of internal loads, both inplane and out-of-plane, at the toe of the flange.
The refinement would be based on insights gained from a detailed finite
element modeling of the area around the nose of the buckle where it meets
the toe of the flange, and the model would have to include the shear
deformation of the skin. The model would be bounded by adjacent nodal
lines in the skin and should also include a portion of the attached flange
bounded by the nodal lines, and the toe and heel of the stiffener. From the
results of the model it would be possible to determine the redistribution
of load and moment in the flange and the skin at the nose of the buckle,
and thereby refine the current models used in SNAPPS.
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Although the above model would have to be super-detailed, it is still
unlikely to accurately determine the concentrated stresses in the vicinity
of the toe. In order to quantify the critical through-the-thickness
maximum principal tensile stress in a one inch wide stiffener pull-off
specimen, Minquet and O'Brien [1995 and 1996] used 2273 elements with
13908 degrees of freedom. The size of the element was of the order of
one-third of a ply thickness (i.e. about 0.002 inches) in the critical region.
This was essentially a two-dimensional plane strain analysis where the
location of the critical stress was known. Similar models of equal
complexity were used by Wang, et al. [1994] and Li, et al. [1996]. Imagine,
then, the complexity of the same finely detailed analysis in the present
problem, where the analysis has to be three-dimensional. The critical
stress is in the skin under the toe of the stiffener, but it's location could
be anywhere along the length of the stiffener.  Further, because of the
changing wave-pattern in the postbuckled state, the location of the
maximum stress will move with increasing load until, at some point and
some load level, it reaches either the allowable stress for a design
analysis, or the average strength for a failure analysis. Therefore, we
should explore the possibility of using a code such as SUBLAM [Flanagan,
1993] to investigate the stresses at the interface between the skin and
the flange, using loads from the finite element model as boundary
conditions in a global-local approach.

The “diagonal tension factor method” (Appendix B) of obtaining the
initial buckling shear load from experimental results needs additional
verification.

For panel C1, which failed deep in the postbuckling range at a load
about 15 times initial buckling, the predicted moment in the skin at toe,
Mce, reached a maximum before the test failure load was reached and then
decreased with increasing load (see Figure 3 of Appendix G). Further study
is required to ascertain whether or not this behavior reflects physical
reality or a limitation of the basic SNAPPS methodology.

Finally, it is emphasized that only one failure mode is considered
here, based on the observation that failure originated in the plies of the
face sheet immediately under the toe of the flange for the three tested
panels. Other failure locations and modes need to be investigated, such as
those associated with the sandwich core for which the deformation of the
skin at the nose of the buckle can be extreme at high postbuckling loads.
Such an investigation is beyond the current scope of SNAPPS. However,
the modular approach used in SNAPPS enables the user to estimate the
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transverse shear force and bending moment in the skin at the toe of the
flange, and add more failure criteria to the code.
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APPENDIX A
DESCRIPTION OF TEST PANELS A1, Bi, and C1

Comparisons are made throughout this report between SNAPPS
predictions and test results for three shear panels tested by Grumman.
This appendix briefly describes these panels: complete descriptions are
given in the test report [Visconti, 1988], and a STAGS analysis report
[Sobel and Sharp, 1994].

The panels (Figures 1 to 3) were tested in the room temperature
"dry" condition (i.e. stabilized at the ambient moisture condition of the
test laboratory). The test frame was designed to allow the diagonal
tension field to be reacted by the compressive load in the stiffener(s),
rather than in the test frame members. This is accomplished through the
use of a "breather joint", as described below. The skin of each panel
consists of two identical thin composite faces separated by SynCore to
form a sandwich (Figure 2). SynCore is an epoxy resin filled with glass
micro-balloons to reduce its density by approximately one half. The face
material is IM6/3501-6 graphite/epoxy tape. The panels all have the
same overall dimensions, so as to fit into the test frame, but the face
layups and thicknesses differ, as does the thickness of the SynCore.
Panels A1 and B1 have two stiffeners at approximately 11 inches spacing,
but differ in the skin faces, the SynCore thickness and in the stiffener
thickness. Panel C1 had a single stiffener, dividing the skin into two bays
of approximately 17 inches width, and also differs from both A1 and B1 in
its SynCore and stiffener thicknesses. The stiffeners (Figure 2) are built
up from back-to-back channel sections of AS4/3501-6 graphite/epoxy
fabric, with straps of the same layup as the channels. Because the
longitudinal and transverse modulii are almost equal in a fabric, see Table
1, the stiffener web and flanges are, as far as is possible with a wrapped
shape, balanced and symmetric laminates. Warping in the curing process
is thereby minimized. The stiffeners have the same overall dimensions,
being formed on common tools, but are of different layups and thicknesses
for the three panels. The laminate nominal thicknesses and layups are
given in Tables 2 to 4. The stiffeners are cured first and then the "green”
skin is cured and bonded to the stiffeners in one operation ("cocured") on a
flat tool. A single layer of FM300 adhesive is used between the skin and
the flange of the stiffener.

The test frame is 38-in.-square fixture built up from heavy steel
bars pinned at the frame corners. The test load P is applied through two
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of these pins on opposite corners of the test frame, as shown in Figure 1.
Parallel to the stiffener(s), the thickened edges of the panel skin are
sandwiched between the steel bars, and normal to the stiffener(s) the skin
is attached to the steel bars through a breather joint. The breather joint
(Figure 3) is intended to ensure that the diagonal tension field load in the
buckled skin is reacted by compression loads in the stiffener(s) rather
than in the test frame members. The breather joint consists of thin steel
angles bolted to the thickened laminate at the edge of the skin, and these,
in turn, are bolted to similar angles attached to the test frame. The joint
acts as a bellows, capable of transmitting the applied shear load in the
plane of the frame but not permitting significant axial load to develop
across the joint. While the breather joint did induce axial compression in
the stiffeners, it also contributed to the nonuniformity of shear stress
near the panel edges, as illustrated in Figure 11 of Sobel and Sharp [1994].
Fortunately, the shear stress concentrations in the skin are well away
from the disbond failures experienced between the skin and the attached
flanges of the stiffener(s), and did not influence the test results.

The panels were instrumented with strain gauges, using rosettes on
both skin faces, and axial gauges on the stiffener web and flanges Layouts
of the gauge positions for each panel are given in the test report. The
moiré fringe technique, described in Volume Ill of Visconti [1988], was
used to obtain both wavelengths and out-of-plane displacements in the
buckled skin for Panels A1 and C1i. Examination of a series of photographs
of the moiré fringes taken during the tests enabled the progression of the
buckle waves to be recorded as the load increased. A major finding of the
test program was the slow growth of new buckles progressing in from the
ends of the panel, i.e. the buckle wavelength reduces continuously as the
shear load is increased without sudden "snap-throughs”.

The mode of failure observed for all the test panels was not a
failure of the bondline between the flange of the stiffener and the skin,
but rather an intra-ply failure of the epoxy matrix of the skin immediately
under the toe of the flange. This was evidenced by the pull-out of fibers
from the surface layer of the skin. It was this observation that led to the
realization that the flatwise tensile strength of the skin face material
was the key to the failure. The test failure loads (from Visconti [1988])
and buckling loads (from Appendix B) are given in Table 5.
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TABLE 2 NOMINAL LAMINATE THICKNESSES (inches)
OF TEST PANELS

LAMINATE , PANEL
A1l B1 Ci

EACH FACE .0336 .0224 .0224
SYNCORE .050 .040 .020
TOTAL SKIN 1172 .0848 .0648
ADHESIVE .008 .008 .008
STRAP .036 .0288 .0216
WRAP .036 .0288 .0216
TOTAL FLANGE (WRAP+STRAP) | .0720 .0576 .0432
TOTAL WEB (WRAP+WRAP) .0720 .0576 .0432

TABLE 3 LAMINATE LAYUPS FOR TEST PANELS

(a) Skin Layup (M6/3501-6 Tape)

LAMINATE PANEL
A1 B1 C1
r rf
SKIN FACE 45
135
0 45 45
90 135 135
135 90 90
45 0 0
nCor rf
(b) Stiffener Layup (AS4/3501-6 Fabric)
LAMINATE PANEL
A1 B1 C1
Stiffener Too! Face
WRAP 45
90 45
0 90 45
90 0 90
SN GUN < - SN S, £ 1N B < 1- T
STRAP (inner & outer) 135 135 45
90 0 90
0 90 135
90 45
45
r rf

NOTES: 1. 0° plies are parallel to stiffener direction (See Figure 1).
2. The cross section and tool surfaces are shown in Figure 2.
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TABLE 4 STACKING SEQUENCE FOR SKIN & ATTACHED
FLANGE OF TEST PANELS. Stacking Sequences Are From
Skin Tool Surface (See Figure 2), And Are Used In

The Maclaminate Code To Obtain Stiffnesses For
Input To Snapps.

LAMINATE PANEL
{Material) B1 C1
FACE
(IM6/3501-6 Tape)
45 45
135 135

{ 5
FACE 45 0 0
(IM6/3501-6 Tape) 135 90 90
0 135 135
90 45 45
135

STRAP 45
(AS4/3501-6 Fabric) 90 45

0 90 45

90 0 90
N S k1 0N B 135 | . 135___
WRAP 135 135 45
(AS4/3501-6 Fabric) 90 0 g0

0 90 135

90 45

45

NOTE : 0° plies are parallel to stiffener direction (See Figure 1).

TABLE 5 BUCKLING & TEST FAILURE LOADS FOR TEST PANELS

LOAD PANEL
A1l B1 C1
Buckling Load P, Kips 375 17.6 413
Failure Load Ptailtest, Kips 85.0 50.0 64.0
Buckling Shear Flow qcr, ppi 634. 302. 63.5
Failure Shear Flow Giaiitest, PP! 1403. 838. Q062.




APPENDIX B

BUCKLING SHEAR FLOW qcr FOR THREE TEST PANELS, AND
DEVELOPMENT OF A NEW METHOD OF OBTAINING EXPERIMENTAL
BUCKLING LOADS FOR FLAT SHEAR PANELS

The SNAPPS code input requires the value of the buckling shear flow,
ger- This appendix describes methods used to obtain the buckling shear
flow for the three panels A1, B1, and C1 (see Appendix A) analyzed here.

B.1 Buckling Load for Panel C 1

Sobel and Sharp [1994] performed a STAGS [Almroth, et al., 1982]
analysis for one of the panels, panel C1. The detailed finite element
model includes the skin, stiffener, breather joint and loading frame. The
STAGS results for C1 are as follows:

e Ql: PCT,STAGS =413 KipS, qu,STAGS = 63.5 ppl (1)

where P is the load applied at two opposite corners of the test frame (see
Figure 1 of Appendix A). A new method, described next, was developed
here for obtaining the buckling loads for the other two panels.

. f h inin xperimental Bucklin
r Fl hear Panels — B he Diagonal Tension F r

As is well known, the determination of buckling loads for flat panels
from test results is notoriously difficult because the buckles initially
develop slowly with little out-of-plane distortion and it is hard to
recognize the load at which they first appear. This is particularly so if
the stiffeners are on one side of the skin only, so that bending out of the
original flat plane of the skin occurs immediately upon application of
load, and is aggravated if the as manufactured skin is not perfectly flat.
Usually, the buckling load is estimated from plots of measured skin
strains by finding the load at which the strains bifurcate or begin to grow.
Such estimates are sensitive to the location of the strain gauges relative
to the nodal lines of the initial buckle pattern. This, together with
variations in user judgment, can lead to ambiguous answers.

A method is presented here for determining experimental buckling
loads for shear panels. The method employs the "diagonal tension factor”,
k, which is a measure of the amount of diagonal tension developed in the
buckled skin. Following the model of Kuhn [1952 & 1956], which is also
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described by Perry [1950], and referring to Figure 1, which is adapted
from Figure 8 of Kuhn [1952], the applied shear flow q is assumed to be
divided into two parts, a portion (1-k)q carried by shear resistant (SR)
action of the skin, and the remainder kq carried by diagonal tension (DT)
action in the (post)buckled skin, i.e. by a tensile stress in the direction of
the folds of the buckled skin. The objective of the method is to derive an
expression for k as a function of membrane stress resultants Ny, Ny and
Nxy'=g>0°, where x' is normal to the stiffener direction, and y' is parallel
to the stiffener (or axial) direction. These resultants are calculated from
strain gauge readings (a considerable effort in itself) and analytically
determined skin stiffnesses. Because k is a measure of the amount of
diagonal tension developed in the skin, a zero value of k infers initial
buckling.  Therefore, an unambiguous estimate of the experimental
buckling load can be obtained by plotting k against load to determine the
load at which k is zero. The expression relating k to Ny, Ny and qis

derived next.

From standard stress resultant transformation equations (or use of
Mohr's circle, see Perry [1950]), the following expressions for the skin
stress resultants, Ny, Ny, and Nxy, in the diagonal tension axis system x, y
(where, see Figure 1, x is parallel to the direction of the diagonal tension
fold, and y in normal to it in the plane of the skin) can be written in terms
of the applied skin shear flow Qq:

M
+ Ny

')
: ley’DT

.
\ny‘ \ny}SR

’ (1-k) q sin(2a)‘l 2kq/sin(2a)\
={-(1-k) g sin(2a)} + 0 }
| -0 qeosearfsn | 0 Jor
] (1-k) q sin(2o) + 2kq/sin(2a)l
= - (1-k) g sin(2a)
\ (1-k) q cos(2a) { (2), (3), (4)

In these equations, the diagonal tension angle, o, is the angle the diagonal
folds make relative to the normal to the stiffener direction (i.e., o is
measured from the structural axis, x', to the diagonal tension fold axis, x).
Equations (2) and (3) are given in Kuhn [1952 & 1956] and Perry [1950], and

* Throughout this work, q is taken to be positive, as is its buckling value, qgcr.
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Eq. (4) stems directly from the stress resultant transformation equations.
From Eq. (4) it may be concluded that the direction of the diagonal tension
fold is generally not the same as the principal stress direction unless all
the shear is carried by diagonal tension (k=1), or if a = 45°.

To relate k to the stress resultants in the structural axis system,
we invoke the first stress invariant, namely, that the sum of normal
stress resultants is invariant with respect to an orthogonal
transformation of coordinates, i.e.,

Nx + Ny = Nx‘ + Ny' (5)

and we substitute Nx and Ny from Eqgs. (2) and (3) into this equation to
obtain

k=("’_"'éﬂﬂ sin(20) (6)
q

To express k as a function of the three stress resultants only, we need a
relationship between o and the resultants. To obtain this relationship, we
equate the maximum principal stress resultant expressed in the structural
(x', y') and diagonal tension (x, y) axis systems to get

%ﬂﬁquz =(Nx;Nx}+\/(NX'4Nx)2+N§y

Eliminating the sum of the resultants on each side of this equation by
virtue of Eq. (5,) and then squaring the radical gives

UEELS SR S

which is also recognizes as being the square of the radius in the x and x'
directions of Mohr's circle for stress resultants. To eliminate the stress
resultants Ny, Ny and Nyy in the diagonal tension axis system, we
substitute Eq. (1), (2) and (3) into this equation to get

NG | 2ka ) - i kRa2 cos - 402
(Nx - Nyf sin(2a)+2{1 Kk sm(2a)} + 4{1-kPq2 cos?(2a) - 4q
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=[—,§9—J2 + 8k(1-K)g2 + 4(1-kPq? - 492
sin(2a)

-[_E&Jz - 4k2q2
sin(2a) (7)

q on the right hand side of this equation may be expressed in terms of
Nx' and Ny by summing Eq. (1) and (2), and using Eq. (5) to give

(8)

so that Eq. (7) becomes
(Nx' - Ny')2 = (Nx' + Ny'}2 - (Nx‘ + Ny')2 S|n2(2a) = (Nx' + Ny')2 0052(2a)
Thus, the angle of diagonal tension is

o=l cos (ﬁx_Ny_) (9)
2 Nx' + Ny'

To get the final expression for k in terms of the stress resultants in the
structural axis system, we square Eq. (6) for k to get

k? = ('\'—X’C?Ni sin2q = [N"J?Nﬁh -cos22at)
4q 4q

and substitute o from Eqg. (9) to yield
(2 - (Ne+ NP (4NeNy)

492 (Ny + NyF

from which, finally

K < YNx Ny (10)
q
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Experimental values of k, as a function of load level, are obtained
from this equation by calculating the stress resultants Ny, Ny and g from
strain gauge readings and analytically determined skin stiffnesses. As
mentioned earlier, the parameter k is a measure of the amount of diagonal
tension developed in the skin. Therefore, by plotting k against the load P
and extrapolating the plot back to the load at which k is zero (which
infers buckling), an unambiguous estimate of the buckling load, P, can
be obtained. The corresponding value of the buckling shear flow, q, is
obtained from a (very nearly linear) plot of the skin shear flow, q (also
calculated from the measured strains), against P, and determining the
value of q corresponding to P,.

B.3 Buckling Resulis B n the “Di nal_Tension Factor Method”

Panel A1 was instrumented with back-to-back rosette gauges on the
skin at the center of the center bay between the two stiffeners, and at the
quarter points of the center and one side bay, see Visconti [1988]. The
measured strains recorded during loading to failure were averaged for
each pair of back-to-back gauges. Using calculated skin stiffnesses, the
stress resultants Ny, Ny and q were obtained, and these were then
averaged for the three locations The factor k was then calculated from
Eg. (10) and plotted against load, as shown in Figure 3. By linear
extrapolation back to the load at which k is zero, the estimated buckling
load Pcr and the corresponding value of qcr are

« Al Por = 37.5 Kips, q,, = 634 ppi (11)

The same procedures were applied to panel B1, as shown in Figure 3,
resulting in the following values:

- B1: P, = 17.6 Kips, Qg = 302 ppi (12)

Panel C1 was instrumented with back-to-back rosette gauges at the
center of each bay of this one-stiffener panel. The recorded strains were
averaged for each pair of back-to-back gauges. The value of the diagonal
tension factor k was then calculated. This procedure was performed for
three test runs: a preliminary run to 16 Kips in increments of 2 Kips; a
second run to 10 Kips in 1 Kip increments to more accurately record the
buckling behavior, and the final run in 4 Kips increments to failure (see
Visconti [1988]). The plots of k versus load for each test are shown in
Figure 4, together with a linear curve fit to the combined set.
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The results for panel C1 are:
« C1: (Per)k=0 = 3-96 Kips, (qg)k-0= 60.8 ppi (13)

The subscript “k=0" is appended to these results for C1 to distinguish
them from the STAGS results given in Eq. (1). Comparison of Egs. (13) and
(1) for C1 shows that the method developed here gives a value of q¢r that
is within 4% of the STAGS prediction. Either of the two close value of qcr
for C1 can be used as input to SNAPPS with inconsequential differences in
results. We choose to use the STAGS value (Eq. (1)).

B.4 Closing Comment

Although the above favorable correlation between values of qcr
obtained by the “diagonal tension factor method” and STAGS is
encouraging for panel C1, it is to be emphasized that more work is
required to verify the adequacy of this new method.
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APPENDIX C
PRINCIPAL STRESS RESULTANTS IN SKIN

C.1 Intr ion

This appendix presents expressions for the principal inplane
membrane stress resultants Ni and N2 as a function of the shear load. N
is positive when it is in tension, and N2 is taken to be positive when it is
in compression. Expressions are also given for the inplane stress
resultants Ny and Ny, which are, respectively, normal to the stiffener
direction, which is the global x' direction, and parallel to the stiffener
direction, which is the global y' direction. The global (x', y') axis system
is also referred to as the structural axis system. The skin is loaded by an
applied inplane shear flow q relative to the structural axis system. The
shear flow can be applied in either of two directions for a fixed stacking
sequence. Throughout this work, q is taken to be positive, as is its
buckling value, q,.

Prior to buckling, the principal stress resultants equal q and make
an angle of 45° relative to the global axes. The objective here is to
determine their values after buckling. The expressions for the stress
resultants are based on two simplifying assumptions (Egs. (1) and (5))
that are reasonable for the objective of developing a simplified
postbuckling method. The validity of these assumptions is confirmed by
comparing predictions based on them with test results for the three test
panels A1, B1, C1 described in Appendix A.

C.2 Principal Stress Resultan

The angle of diagonal tension (see Figure 1 of Appendix B) for flat
shear panels is assumed to be

o = 45°. (1)

Figure 1 of Section 3 shows that this is a good approximation for the
three tested. The experimental values of Qtin this figure are based on Eq.
(9) of Appendix B, which is repeated below for completeness: '

a=1cos! (—J’—Nx' “ Ny
2 Nx' + Ny'



For this assumed value of a, Eq. (4) of Appendix B states that the
shear stress resultant, Nyy, in the diagonal tension axis system vanishes.
Hence, the direct stress resultants, Ny and Ny, are in fact principal
resultants, N1 and No, i.e., the principal stress resultants line up with the
diagonal tension folds at all load levels. Noting that Nz is assumed to be
positive when it is in compression, Egs. (2) and (3) of Appendix B give

N = (1+k)qg (2)
and
N2 = (1-k)q (3)

where k is the diagonal tension factor described in Appendix B. Based on
test results for aluminum panels, Kuhn [1952] gives the following
empirical expression for k:

Kkuhn-DT = Tanh[05l°g(q/qu)] (4)

For the three panels considered in the present work, Figures 2 through 4 of
Section 3 compares principal stress resultants obtained from Kuhn's
diagonal tension (DT) model based on k from Eq. (4) with results from
tests and STAGS (for C1 only). The STAGS results agree well with those
from test, but the Kuhn-DT model slightly under-predicts the maximum
principal diagonal tension stress resultant, Ni, but considerably over-
predicts the minimum principal stress resultant, N2, in the buckled panels.
Furthermore, as may be observed from Figure 1, the Kuhn-DT model
predicts a significant degradation in shear stiffness with increasing load
in comparison with the measured and STAGS results for C1. For example,
at the test failure load, the shear strain predicted by the Kuhn-DT model
is about 30% higher than that of the test and STAGS for C1. Also,
examination of the STAGS and test results in the figure reveals that the
overall shear stiffness of the panel is constant’, and is equal to the initial
shear stiffness (c.f., the linear and nonlinear STAGS analysis results.), a
result that we use in Appendix E, where we calculate the maximum out-
of-plane displacement as a function of load. In view of these findings, we
decided not use Kuhn's empirical expression for k. Besides, we want the

* Note, however, that there is a reduction in overall stiffness at the bifurcation buckling point,
of course, as is evidenced from a plot of the overall corner displacement, &, at the loaded
corner against the fixture load, P, as shown in Figure 7 of Sobel and Sharp [1994]. The slope
of the P-S curve is a measure of the overall stifiness of the panel and therefore represents all
stiffnesses, including out-of-plane bending stiffnesses, as is evident from the energy
consideration that PS/2 equals the panel's total strain energy (bending plus membrane).
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SNAPPS methodology to be devoid of all empiricism. To obtain k, and
hence N1 and N2 via Egs. (2) and (3), we make a further assumption;
namely, that the compressive principal resultant after buckling, N2, is
constant for all values of g and equal to the buckling shear flow, g, i. e,

N2 = Qer (for q 2 Ger) (5)
With this assumption, Eq. (3) gives
k=1-0,/q (6)

Inserting Eq. (6) into Eg. (2) provides the following expression for the
tensile principal resultant after buckling:

Ny = 29-q,,, (for g 2 q) (7)

This view of events is similar to that proposed by Wagner in the "frame
analogy”, as described by Kuhn [1952] and illustrated in Figures 3a and 3b
of Kuhn. It is noted that Kuhn first gives an expression for k (Kuhn's Eq.
(26)) that is the same as the “Wagner-type” expression for k ((Eq. (6)
above), but later abandoned it in favor of an empirically determined
diagonal tension factor, Eq. (4).

It is important to point out that if N2 was assumed to increase (in
an absolute sense) above its value at buckling, then N{ would have to
decrease by the same amount in order for the sum of (N1+ N2) to remain
constant (in accord with the first stress invariant principle), and this
would lead to a higher predicted failure load, gfail. Thus, the assumption
that N2 = g, after buckling is conservative. On the other hand, it would be
unrealistic to assume that N2 is zero for all values of q, i.e., to assume a
state of pure diagonal tension.

C.3 Direct Stress Resultants in Structural Axis System

Using standard equations for transformation of stresses from one
orthogonal axis system to another, we readily obtain from the expressions
for the stress resultants in the diagonal tension axis system (Egs. (5) and
(7)), the following expressions for the stress resultants in the structural
axis system:

Ny = Ny' = Q-Q¢r, (for q 2 Qcr) (8)
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As a check we substitute these equations into the general expression for
k, (Eq. (10 )) of Appendix B, repeated below for convenience,

K = YNx Ny (9)
q
to obtain
k=1-q.,/q

which is Eq. (6).

C.4 Closin ommen

The principal stress resultants described by Egs. (5) and (7) are
averages over the extent of the buckle. However, they can be used to
approximate integrated quantities such as the buckle wavewidth, ¢
(Appendix D); the maximum out-of-plane displacement, dmax (Appendix E);
and the rotation at the end of the tie-rod, 8 (Appendix F).

Postbuckling values of the principal stress resultants are also
needed for local considerations at the toe of the flange. There the skin is
flat and can be assumed to be in a state of pure shear. This means that
the stress resultants in the skin under the toe in the diagonal tension
field direction are given by

N1toe = N2toe = q, (for all q) (10)
It is to be recalled that Nowe is taken to be positive when it is in
comression, and that g>0. Equation (10) is used in Appendices H, I, and K

to describe local stresses in the unbuckled skin under the toe of the
flange.
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APPENDIX D
BUCKLE WIDTH & LENGTH
D.1 Buckle Width

Figure 1 depicts a buckle bounded by adjacent nodal lines and the
stiffener flanges. The buckle width ¢ is determined next from
considerations of out-of-plane equilibrium. If we assume that the buckle
may be approximated by the rectangle ABCD of length ¢ and width ¢, then

we may take the out-of-plane displacement & as

. |E . TN

8(&,m)=0max Sin—= sin—
(€,n)=Omax 7 c (1)

where the axis system has its origin at B; & is measured from Bto C,nis
measured from B to A. The stress resultant in the & direction is tensile
and is denoted by N1; that in the n direction is compressive and is denoted
by N2 (a positive N2 is compressive). As discussed in Appendix C, they are

assumed to be constant throughout the area bounded by the rectangle
ABCD. This piece of the buckled sheet has to be put into equilibrium
normal to its original flat plane, under the components of N{ and N2 acting

through the slopes along the edges of the distorted shape.

The total out-of-plane force due to the tensile stress resultant Ni
acting at the angle dd/d¢ along one edge of the buckle (such as AB in
Figure 1) is then given by

c
N, (4 =2N c
L 1 (d§’§=odn 1 Omax T,

This must be balanced by the following out-of-plane force due to the
compressive stress resultant N2 acting at the angle dd/dn along a nodal
edge of the buckle (such as BC in Figure 1):

£

No (g§

dE = 2 No 8max £
dn)n=0§ 2 maxC

0



By equating these two forces, we obtain

2 Ny 5max%= 2 N2 5max£'

It is seen that 8may in this equation conveniently cancels out (3max i$
determined in the next appendix) thereby providing the following
expression for the buckle aspect ratio:

c. /N2 2

7 N (2)
In terms of known quantities, and assuming that the diagonal tension
angle o is 45°, the length £ can be written as

e 2k

From Figure 1, b-2L¢ is the length OC, denoted by L, the known toe-to-toe
cosQ

distance between flanges measured in the diagonal tension axis system,

i.e.,

L = b-2Lf)
cosa

(3)
Thus

¢i=L-c
so that Eq. (2) yields the following expression for the buckle wavewidth:

| Vi |
L1V Ny ' (4)

in which (see Appendix C)
N1= 29 - Q. (q>qcr)7 (3)

N2= Q. (9>Qc)- (6)
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It is to be recalled that positive N{ is tensile, and positive N2 is
compressive.

At buckling, for which Ny= N2, Egq. (4) yields

£,z

whereas, from Timoshenko and Gere's [1961, page 383] buckling analysis
of a long, simply supported, isotropic plate under shear, it may be shown
that

(c_) 13
L cr,Timo 2

It is proposed that Eq. (4) be modified to pass through this buckling point
to give
No

| | AR e |
cofT5L/ VN1t | _ o005 Ni_\_q205¢( 29-9er

R B B AP

From the last term on the right, it is seen that the wavewidth ¢ is
expressed as a function of the load level q. Effectively, we determined
the shape of the ¢ vs. g curve from equilibrium considerations, and
adjusted the amplitude (by 22.5%) of the curve to have the curve pass
through the buckling point.

D.2 Buckle Length

The axial wavelength, Lp, which is the projected Ilength of the

wavewidth along the stiffener axis, is used in Section 3 for correlating
SNAPPS results with those from test and STAGS. From Figure 1, it is seen
to be given by

Lp=—C (8)
Cos O

From Egs. (3) and (7), and with the angle of diagona! tension equal to 45°,
the wavelength may be written in the following dimensionless form:
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Lo _oy15 Ni_ 245 (9)
by 14,/ N2 14 4/ =2
N1 N
where
by = b-2L¢ (10)

is the toe-to-toe width of the skin, measured normal to the stiffener
direction (see Figure 1). Note that this form for the wavelength is valid
for all panel geometries. A comparison of predicted and measured
wavelengths based on Eq. (9) is given in Section 3.

D-4



"SIONV T HINIHHILS 3HL 40 S30L JHL A ANV S3NIT TYAON LN3OVIrav Ag d3aNnog
3I0N8 ITONIS V SHIAISNOD ‘0 ‘HLAIMIAVM FHL HOJ SISATYNV 3HL | 3HNOIA

(
@
=
@®
3
®
-~
Q)
®
3
—
®
e
=1 </
©
U
l
o
@
e
,A n
o
=
Q
®
)
—*
=%
©
2
®
-
@)
D
w
)
=
S
)
— M |- =n -
l,\
| n -
T~
L —

D-5






APPENDIX E
MAXIMUM OUT-OF-PLANE DISPLACEMENT

As we saw in the preceding appendix, the out-of-plane displacement,
5, through its effect on the slopes at the boundaries of the buckle, governs
the out-of-plane equilibrium of the buckle, from which we were able to
determine the buckle width ¢. Now we need to find an expression for the
maximum value of the displacement, dmax. The following derivation is
based on the kinematic argument that the buckled sheet must fit into the
distorted shape imposed by the nodal lines and the stiffeners, and that,
after buckling, it does this by moving out of its original flat plane into the
characteristic shear buckling pattern.

Figure 1 shows a single buckle, bounded by adjacent nodal lines and
by the toes of the stiffener flanges. The length of the nodal line OCis
assumed to remain unchanged in a shear distortion, and the length d of the
shorter diagonal AC is given by

di2 = L2 + Lp2 - 2LLpcos(n/2-0)
= L2 + Lp2 - 2LLpsing for small values of v.

Imposing a shear strain 7y, such that ¢ becomes ¢+v, the new length of the
diagonal AC is given by

dn2 = L2 + Lp2 - 2LLpsin(d +Y)
= (L2 + Lp2 - 2LLp sind) - (2LLpY cosd) for small values of y.

Increasing the shear strain from the buckling value 7yer to 7y, and expressing
the change in the length of the diagonal AC as a strain &g [i.e. where g =
(new length - old length)/old length] gives

€d = (dn-dj)/d;

) , 12 15 5 , 1/2
[L +Lp“-2LLp sind -2LLbycos¢] - [L +Lp“-2LLpsing -2LLbycrcos¢]
]1/2

% i
L24+Lp2-2LLpsing -2LLpYercoso

By expanding the radicals, and neglecting terms in y2 or higher powers, the
expression for €4 can be approximated by
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- LLp(Y-Ycr) cosd
L2 + Lp2 - 2LLp sind

But L= b, secd (see Figure 1) and d2 = (L2 + Lp? - 2LLp sind) so that the
approximation for ¢4 may be written as

L
€9 = - E02 (y-yor) (1)
d
where the minus sign denotes compression.

Now, to obtain an alternate expression for €d in the postbuckled
panel, define an axis X along the diagonal AC, and assume the out-of-plane
displacement to be

1-cos %l-)

8(x)=§m2"-‘l

it is straightforward to show that this assumed displacement variation
along the diagonal d is consistent with the double-sine displacement
shape (Eq. (1) of Appendix D) used in the preceding analysis for the
determination of the wavewidth c. Later we will show that Smax is
insensitive to the assumed displacement shape. Integrating the length ds
along the curve from 0 < X < d, using

ds = 1+ (@)2 =1+ L(Z@m&&z smz(ﬂ) for small _@M
dx dx 21 d d d
gives the length the total S measured along the curve as

)

Expressing the change of length as a strain €d [= (d-S)/d ] yields

d(1+L(L6maL
41 d

d-d (1 +1_(_7£%3L)2)
d

5
- 4 _ . [®®max 5
td d (2d) * (2)
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Equating the two expressions for €d, Egs. (1) and (2), provides the
following closed-form expression for the maximum out-of-plane
displacement: -

Omax = %‘V Lobu(Y-Yer) (3)

It may be noted that the precise shape of the out-of-plane distortion
is not very critical, because we are integrating along a curve and
expressing the result as an average (ed). In a study in which different

expressions for the assumed shape were used, such as circular arcs,
parabolas, fourth-order polynomials, sine and sine squared waves, Eq. (3)
retained the same form and the multiplier in front of the radical changed
by less than 7% from the higher and hence more conservative value of 2/x .

Because the STAGS analysis and test results for panel C1 [Sobel &
Sharp, 1994] and the test results for panels A1 and B1 [Visconti, 1988]
revealed that the skin shear stiffness Gt did not change with applied load
level (see Figure 1 of Appendix C, and discussion therein), Eq. (3) can be
written as

Smax = %’V Lbbtiq-—thﬂj (4)

In this expression, b, is the toe-to-toe distance measured normal to the
stiffener direction, i. e.,

bn = b’2Lf (5)

where b is the stiffener spacing, Lf is width of the flange measured from
stiffener centerline to toe, and Lp is the buckle wavelength projected
along the stiffener axis. An expression for Lp is given in the preceding
Appendix. '

An alternative form for the maximum out-of-plane displacement
may be obtained by inserting

Lb = ¢ secd and b, = L cosd (see Figure 1),

into Eqg. (4). This vyields the following formula, written in terms of
diagonal tension axes:

_2 g-Ger
max = 24/ Lo [Ader) (6)

E-3



In this equation, L is the toe-to-toe length of the diagonal tension fold,
and c is the buckle width for which the following expression is derived in

the preceding Appendix:

c=V1—,_5_|_’___/\/—%_l=ﬁ_5_L’ 2Clq'cqrcr 1

\1+4/Ng’ | \1+ / _Qer [
N1 29-Qer )

The form for the maximum out-of-plane displacement given by Eq. (6) is
used in the SNAPPS code of Appendix N.

From the last two equations, the maximum out-of-plane
displacement may be written in the following dimesionless form:

L(Yer) (8)

_QN

19) l.Q
t
—r

1+

= 0.7045

N
o
1

e

n
Q

This dimensionless form for dmax is used in Section 3 to compare

predicted and measured values of the maximum out-of-plane
displacement. Note that form is valid for all panel geometries
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APPENDIX F

TIE-ROD ANALYSIS

F.1 Introduction

The development of the simplified analysis now proceeds to the
"tie-rod" analysis in which a unit width of skin parallel to the long axis of
the diagonal tension buckle is assumed to be loaded axially by the tensile
stress resultant, Njy, and by a lateral load p, which is normal to the
original unbuckled plane of the skin and which represents the out-of-plane
component of the compressive stress resultant N2o. For this simplified
analysis, it suffices to assume that N¢y and N2 are constant along the
length of the tie-rod, but, in fact, both stress resultants vary along the
length and fall to the unbuckled values at the toe of the flange. Because
the angle through which N2 acts varies, the lateral load p is assumed to
vary sinusoidally along the length of the nodal line, a variation consistent
with those used in the wavewidth (Appendix D) and maximum out-of-plane
displacement (Appendix E) analyses. The objective of the tie-rod analysis
is to obtain a closed-form expression for the rotation © at the end of the
tie-rod in terms of the axial load Nj, the maximum out-of-plane
displacement dmax, and the moment M at the end of the tie-rod.

Figure 1 shows the tie-rod model. The upper half of Figure 1a
depicts the assumed bi-sinusoidal buckle pattern in a typical diagonal
tension fold, and the shaded strip in the lower half represents one-half of
the tie-rod model, which extends along the entire length, L, of the buckle*.
The tie-rod model is further displayed in Figures 1b to 1d. From Figure
1c it is seen that the vertical (out-of-plane) component of the
compressive membrane force, N2, produces transverse shear forces at the
edges of the tie-rod. As just mentioned, these edge forces are assumed to
vary sinusoidally in the direction of the fold (Figures 1b and 1d) and are
represented by a lateral (out-of-plane) running load, p (Figures 1b and 1c).

* The stiffener is not shown in the figure, to avoid excessive clutter. However, the downward
deformation of the buckle, implies that the stiffener is on the top surface of the skin (on the

surface with the negative y coordinate.
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The running load p is reacted by the edge forces R (Figure 1d). Thus, R
balances the vertical component of N2 that varies along the longitudinal

edges of the strip.

For simplicity, the tensile axial load in the tie-rod model is held
constant at it's average value (i.e. N1 = 2g-qcr, see Appendix C) and the
solution is then tractable. In fact, the axial load must be slightly above
the average value over most of the length of the tie-rod, but must fall,
over an undefined—but assumed small—distance at each end, to the value in
the unbuckled sheet (i.e. Nijoe = g, see Appendix C )

F.2 olution Of Tie-Rod Problem

Figure 2 displays the notation and sign conventions. The x axis is in
the direction of the diagonal tension fold, and it's origin is at mid-length
of the fold. The y axis is normal to the plane of the skin. Because the
solution of the tie-rod problem is straightforward, it is presented in
more-or-less outline form.

- Relate Reaction Rto Magnitude (po) of the Pressure p

&

R=J—22 M:'——— 1
- .

. Differential Eguation (DE). [Timoshenko, 1956]

Dew™" - Nyw" = po cos(ELi) ' (2)

where () =ag—(x)and Dgr is the bending stiffness of the skin (subscript "s”
X

for "skin", subscript "r" for "rotated" in the direction of the diagonal
tension fold).

Letting:
2Z= N1 (3)
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The DE becomes:

w"™ - 2%w" = P9 cos (M) (4)
sr
« Complementary Solution, we

The solution of the homogenous form of Eq. (2) is
wc = ACosh (Ax) + BSinh (Ax) + C +Dx
« Particular Solution, wp
A particular solution of Eq. (2) is easily shown to be:

Wp =T I_\% cos(’—%) (5)

where r, which has dimensions of length, is given by
L
1+ (L
Al
» Jotal Solution, w = w¢ 4+ Wp

w = ACosh (Ax) + BSinh(Ax) + C +Dx + r KIB- cos{ﬂl_i) . (7)
1

Because the displacement must be symmetric about the midlength, x =0,
the two asymmetrical terms (B Sinh (Ax) and Dx) must vanish.

Therefore,

w = ACosh(Ax)+ C +r NRT cos (ﬂi&) (8)
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The arbitrary constants (A and C) in this equation are determined from the
following boundary conditions (BC) at x =i—2|-—):

BC1: M{i 2L)= M, (where M is depicted in Figure 1d)

BC2: w(ié—)=0

Using M = -Dgw" (see Figure 2b) and Eg. (3), BC1 becomes:

Substituting Eq. (8) for w into the above expression yields the arbitrary
constant A:

A = -Sech (%)NM (9)
1

The constant C is obtained from BC2 and Eq. (9):

C = -ACosh (lL) = +Sech (ZL) Cosh (LL)—M = M (10)
2 2 2 /N1 N4

Substitution of these constants into Eq. (8) provides the solution for w:

wix) = |1 - Cosx [ B, B gos mx - (1)
Cosh(L) Nt N L
2
. ion Lef (x=-l-—),§
2

Differentiating Eq. (11) once gives:

-X_M_Ml- r.ﬂﬂ. sin(nx) (12)

W (x) = X
N1 Cosh (%’-—) Nt L L
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Therefore, the rotation, ©, at the left end x = L see Figure 1d, is:

2
6=+w'(:L)=+xTanh(&)M+ rBz (13)
2 2 /N4 N¢ L
« Maximum Displacement. max
o = w(0 =[1-Sech(LL)]—ﬁ— rB 14
max (0) 2 1 Ny + N1 (14)

« Simplification of Egs. (13) and (14) for Large Values of AL
. Tanh(z\éL) term in 6
Tanh(%)—ﬂ for &2L>2, or il > 4

. [1 - Sech (LZL” term in dmax

Assuming a 10% error in neglecting Sech (%) in comparison

with unity gives

Sech (&) =01= Cosh(z*—'——) =10
2 2

= A 3L >6
2
T ‘—71-2 term in denominator of r (Eq. (6))

AL

Assuming a 10% error in neglecting {lLL)Z in comparison with

unity gives

TP _01=>A=-E—=99 orAL > 10
(xL) Y0.1
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With the above approximations, the equations for the rotation and
maximum out-of-displacement simplify to

p=r M, R (18)
N1 Ny

Smax ~ 4 +L B 19

max N1 T‘N1 ( )

In view of the above discussion the simplified equations for 0 and dmax are
valid for:

AL > 10 (20)

The simplified expressions given by Egs. (18) and (19) are used in this
report.
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APPENDIX G

SKIN BENDING MOMENT AT TOE, Mice

G.1 Introduction

The purpose of this appendix is to determine the bending moment in
the skin immediately under the toe. This is done by linking the "tie-rod"
model, described in the previous Appendix F, to a model of the combined
stack of the skin, flange and adhesive layers between the toe of the flange
and the heel (or stiffener centerline). The latter model is based on that of
Tsai [1983] in that it is cut from the stiffener in the same diagonal axis
as the tie-rod model of the skin, but departs from Tsai's model in that it
includes the entire stack of layers, adhesive and SynCore of the skin and
the flange (for this reason, properties of the total stack have the
subscript "tot" and, because they are in the diagonal tension or rotated
axis system, "totr"). The model of the combined skin and flange is
represented by a cantilever in the diagonal tension direction, clamped at
the stiffener centerline and loaded at its tip by the transverse shear force
and bending moment from the end of the tie-rod. The moment is
determined by requiring rotational compatibility between the tie-rod end
and the tip of the cantilever. Because the transverse shear force is
related to the moment through the maximum out-of-plane displacement
dmax of the tie-rod, the only unknown in the equations for the rotations is
the moment.

G.2 Rotation at End of Tie-rod (see Figure 1 of Appendix F)

From Eq. (18) of Appendix F, the rotation at the left end of the tie-
rod, is given by

N TN, (1)
and from Eq. (19) of the same appendix, the transverse shear force at the

end of the tie-rod is

_B_=E_(5 .M
N, LM T (2)

In these equations,
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A=a/ DﬂL (from Eq. (3) of Appendix F) (3)
sr

and

L is the toe-to-toe length of the buckle, see Figure 1 of Appendix E,
Smax is the out-of-plane displacement at the center of the tie-rod,
as described in Appendix E,

N1 is the membrane stress resultant in the buckled skin in the

dlagonal tension direction,
Dsr is the bending stiffness of the skin about it's neutral axis

normal to the long axis of the buckle.

Eliminating R/N¢ from these equations gives
6=7\.M+L(8max‘—) (4)

{ "Flan n kin" ntilever

Figure 1 shows the beam model of the combined skin and flange. The
beam is assumed to be clamped at the heel, an assumption justified by the
STAGS results of Figure 2. Any elementary strength of materials text
provides

2
Wioe L
Btotr = L Ntoe Lr 4 (Myoq - gz) =1 (5)
2 Diorr totr

where
Wioe = the transverse shear at the tip of the cantilever,
Mioe = the bending moment at the tip of the cantilever,
Diotr = the bending stiffness of the combined stack of skin, adhesive
and flange,
Ly = the heel-to-toe width of the flange measured in the direction
of the diagonal tension fold,
gz = the moment due to the offset of the skin stress resultant from
the midplane of the combined stack, as described below.

As described in Appendix F, the tensile axial load in the tie-rod
model is held constant at it's average value (i.e. N1 = 2g-g¢r, See Appendix
C) . In fact, the axial load must be slightly above the average value over
most of the length of the tie-rod, but must fall, over an undefined —but
assumed small — distance at each end, to the value in the unbuckled sheet
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at the toe (i.e. N1toe = g, see Appendix C). When the tie-rod is connected to
the tip of the cantilever the change in N1 at each end of the tie-rod must
be taken into account. The tensile end load transferred from the end of
the tie-rod to the cantilever is therefore Niipe = q and not N1 =2q-Qer. At
first sight, it appears that equilibrium is being violated, but the change is
assumed to occur over a short length at each end of the tie-rod and is
brought about by local in-plane shear stresses in the skin near the toe.
These local changes are assumed not to invalidate the solution of the tie-
rod problem.

In Eg. () an additional moment (qz) has been added to Mie tO
represent the moment due to the membrane stress resultant in the
unbuckled skin at the toe (i.e. Niioe = q) being offset a distance z from the
centroid of the combined stack of the skin and flange layers (see Figure 1).
z is given by

Etf’(ts + 13 +£ + Ets,—t—s—
. 2 2 s (6)
Etfr + Etsr 2
where
Ety = membrane stiffness of the flange in the diagonal tension
direction '
Etsr = membrane stiffness of the skin in the diagonal tension
direction
tf = flange thickness
ts = skin thickness
ta = adhesive thickness
G.4 Determination of Bending Momen Transver hear For T

By enforcing the following conditions, obtained by comparing Figure
1 of this Appendix to Figure 1d of Appendix F:

M = - Mioe (7)
R =+ Wioe (8)
0=+ etotr (9)

we obtain the following expression for the bending moment in the skin at
the toe:
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ﬂsmax(1 - L%rN1 )+Lfrq2

Moe = —L& 2 Diotr thotr (10)
A-m/L, Lir | & I-fr)
N1 Diotr 2L Dtotr
where
l /N2
c=Yis5L/Y N1 (from Eq. (7) of Appendix D) (11)
‘1+ Nz
N4
Smax =% Ld9d 'G‘?C' (from Eq. (6) of Appendix E) (12)
N{ =29 - Qcr (from Eq. (7) of Appendix C) (13)
N2 = Qcr (from Eq. (5) of Appendix C) (14)
and

Gt = the in-plane shear stiffness of the skin referred to axes
parallel and normal to the stiffener direction.

Also, from Egs. (2), (7), and (8), we obtain the following expression for the
transverse shear force in the skin at the toe:

Wioe = % (N18max + Mioe) (15)

Equation (10) is the full version of the expression for Miye and is
used in the code listed in Appendix M.

G.5 Parametric_Study

In the course of applying SNAPPS, it was found in some cases that
the moment in the skin at the toe reaches a maximum and then decreases.
The following investigation of this behavior brought to light two
dimensionless parameters which govern the magnitude of the maximum
value of Mie and the shear flow g* at which it occurs, and which have

practical design consequences.
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Examination of typical magnitudes of the various terms in Eg. (10)
reveals that Miye may be roughly approximated by dropping terms in the
numerator and denominator. The expression for Mige then simplifies to

2

TOmax (1 _LEr Ny )

Mice = L _L_2 Dtotr 7
N4

(16)

By substituting for dmax, ¢, and N1 and A in terms of q and qcr, it can be
shown that Mye can be expressed in terms of two dimensionless
parameters and a function of g/qcr.

2
Mice _@=(1_qu Lgr q),{a) (17)
qu Dsr Dtotf qu’ QCr

The function f(g/qcr) rises monotonically against q/qer, but the
2

presence of the parameter Qer Lir makes it reach a maximum and then
totr

fall, as illustrated in Figure 3 where Mioe is plotted against g for panel C1.

(Neither A1 or B1 reach the predicted maximum value of Mge, as is shown
in Figures 4 and 5.)

The form of Eq. (17) indicates that, for a specific panel, if we plot
Mioe against q, and search for the maximum value of Mige, and the value (q*)
of the shear flow at which it occurs, then we can plot both the maximum
moment parameter %@ bG—t and the shear flow q*/qgr at which it

cr sr
2
occurs, against dor Lir
totr

Analyses, using the full version of the expression for Mg given in
Eq. (10), were done for the three test panels, A1, B1, and C1. In each case,

2
several different values of q[‘;'—l‘" were used, obtained by varying the
totr
bending stiffness of the combined skin and flange stack, Diotr- The

2

resulting values of Moe . / Gt and q*/qcr are plotted against Qor Lir in
Qcr V Dgr totr

Figures 6 and 7. In each figure the solid symbols denote the nominal panel
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and the open symbols are for the variations. Both figures show that the
results from all three panels can be approximated by a single curve, as
predicted by the approximate form of Eq. (16). It is apparent that both
curves are fitted quite well by hyperbolae, and that the maximum toe
moment can be approximated by

Mioe,max = 0.35 (Diotr/L2) ¥ Dsr/Gt
(18)
occurring at a shear flow

q* = 0.59 Dtotr/'.fr2 (19)

G.6 Design Implications

From a design point of view it is desirable to reduce the toe moment
as far as possible because the peel stress between the skin and the flange,
the membrane stress in the critical skin ply, and, therefore, the maximum
principal tensile stress depend on Mwpe. The above results show that the
maximum value of the toe moment increases as the skin/flange bending
stiffness Diotr is increased, or as the flange length L¢ is made shorter.

The term ¥Ds//Gt is approximately proportional to the skin thickness and
consequently the toe moment also increases as the skin thickness ts is

increased.

In summary, these results confirm the need for compliant flanges
which impose little restraint on the deformation of the buckled sheet
(however, the stiffener must be sturdy enough to prevent the diagonal
tension folds from progressing across the stiffener centerlines).
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APPENDIX H
INTERLAMINAR SHEAR STRESS BETWEEN SKIN AND FLANGE

In this appendix, an expression is presented for the shear stress
distribution along the interface between the skin and the flange, based on
the "shear lag" analysis of Kuhn [1956]. The distribution is used in the
peel stress analysis, described in Appendix |, and the maximum value of
the shear stress, which occurs under the toe of the flange, is used in the
failure criterion in Appendix L.

Figure 1a shows a section of the combined skin and flange model in
the x-z plane, where x is in the direction of the diagonal tension fold, and
z is normal to the plane of the skin. The section is of unit width in the
inplane direction normal to the fold (i.e., of unit width normal to the plane
of the paper). Following Kuhn, the skin-flange model is idealized as two
axial load carrying bars joined by a shear carrying web, as indicated in
Figure 1b. The boundary conditions are that at the toe, x = 0, the bar
representing the skin is loaded by an axial tensile force P, and the bar
representing the flange has zero load. A further assumption is made that
the width of the flange Lfr is long enough for the shear stress to die away
to zero at the heel. This assumption leads to Kuhn's Eqg. (4.10)
corresponding to Case 4 of Table 4.1. Adapting that equation to the Kuhn-
type model of the layered model (Figure 1b) leads to the following
equation for the distribution of the interlaminar shear stress between the
skin and the flange:

=PK ___E_!_Af__) -Kx i
) t (Ef Af + EsAs ® )

where (Kuhn’s Eq. (4.4))

K2-GY 1, 1. ) (2)
b EfAf EsAs

In applying Egs. (1) and (2) to a unit width w of the layered model,
the axial stiffnesses EjAs and EgAg of the flange and skin in the Kuhn-type
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model are replaced by wEts and wEts, respectively (where Et denotes the
product of modulus E and thickness t; the subscripts f and s denote the
flange and skin, respectively, and the subscript r denotes that these
quantities are measured in the [rotated] diagonal tension direction). The
load P is replaced by wNiie, (where Nigoe is the end load in the skin
immediately under the toe, as described in Appendix C), and the web
thickness t is replaced by w. Further, because G is not uniform throughout
the model, the quantity G/b in Eqg. (2) must be replaced by a "modulus of
foundation”, denoted by ¢xz, which is given by Eq. (2) of Appendix J. With
these substitutions, w nicely cancels out, and Egs. (1) and (2) become

Et; ) K
x}=N Kl———Ll— e RX 3
1) = Nitos (Etfr+Etsr (3)
and
K2 - (1 + 1 ) 4
dxz . B (4)

The maximum value of the shear stress occurs at the toe (x = 0), and

is simply denoted by 1y, (without any subscripts “toe”), i.e.,
Txz = (T(X))X=0 = N1toeK ——E‘t—fr——)
Etff + Etsr

(5)

In the interest of keeping the model as simple as possible, a more
exact analysis is not considered worthwhile at this time. However, the
use of SUBLAM [Flanagan, 1993] to verify the distributions and magnitudes
of the peel and shear stresses between the flange and the skin, should be
part of any future work.
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APPENDIX |
PEEL STRESS ANALYSIS
i1 ntr ion

A major contributor to stiffener disbonding is the peel stress
between the skin and the flange immediately under the toe of the flange.
Typical of the basic strength-of-materials approach adopted in SNAPPS, a
simple beam model is used here to determine this stress. Figure 1 shows
the model in which the skin and flange are idealized as beams that are
coupled by an "elastic, Winkler-type, foundation” of modulus ¢
(determined in Appendix J). The peel stress is given by

Gpeel(x) = ¢z[Wf(X)'Ws(X)] (1 )

where ws and wg represent out-of-plane displacements of the flange and
skin, respectively. The peel stress and displacements vary along the
length of the coupled beams, as indicated in Eq. (1) by the axial coordinate
x, which is measudred from the toe of the flange to its heel, in the
direction of the diagonal tension fold. The other coordinate used in this
analysis is z, which is normal to the plane of the skin. The objective of
the analysis is to obtain a closed-form expression for the peel stress at
the toe of the flange. This stress is simply denoted by o, (avoiding
subscripts such as “toe”). That is,

Gz = (Opeel)x=0

The beams are assumed to be of length L¢ in the direction of the diagonal

tension fold, and of unit width in the inplane direction normal to the fold.
Lir is the “rotated” flange (subscript “r* for rotated) width measured
from the heel to the toe of the flange in the direction of the fold. The
objective is to determine wj and ws, and hence ¢z, as a function of the
following three loadings shown in Figure 1: the transverse shear force
Wioe in the postbuckled skin; the bending moment Mye in the skin; and the

interlaminar shear stress distribution 1T(x) at the skin-to-flange interface.
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The interlaminar shear stress, whose presence complicates the analysis,
arises from the diagonal tension field pull Nitoe unloading some of its load
from the skin into the flange (see Figure 1). This shear stress causes a
moment on each beam because it acts at a distance from the midplane of
the flange and the skin. Thus, the present analysis may be regarded as
being an extension of the classical "beam on an elastic foundation” method
[Hetenyi, 1946] to the case in which two beams are elastically coupled
together and are subjected to an offset shear traction on their interface
surfaces.

We next make a reasonable assumption that greatly simplifies the
analysis, and which is consistent with our objective of obtaining a
closed-form expression for the peel stress at the toe, which is where the
peel stress peaks and where failure has been observed in our tested shear
panels. The assumption is based on results from detailed analyses [Cacho-
Negrete, 1978] for thin laminates joined by a thin adhesive layer. The
detailed results reveal that the peel stresses between the skin and the
flange are highly localized under the heel and toe. Because they die-away
so rapidly from each end of the flange, the two stress concentrations do
not interact and are essentially uncoupled. Thus, for purposes of
determining the peel stress at the toe, we may assume that the length
(rotated flange width, L¢) of the coupled beams is long enough so that
conditions at one end (heel) do not affect the other end (toe).
Analytically, it can be shown [Hetenyi, 1946] that this assumption is
valid provided that the following equation involving the characteristic
wave number B is satisfied:

BLfr >T.

This condition is satisfied by our tested shear panels. For example, for
panel C1, Figure 2 clearly shows that the rotated flange width

Lfr =(0.75")/ cos(45°) =1.06"

is "long enough" so that waves emanating from one end die out rapidly
before they reach the other end. The decaying functions plotted in the
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figure represent terms in the complementary solution for a beam on an
elastic foundation. The assumption that conditions at one end of the
flange do not affect conditions at the other end greatly simplifies the
solution of the coupled beam equations and leads to an explicit closed-
form formula for the peel stress at the toe in terms of the transverse
shear force and bending moment in the skin, and the interlaminar shear
stress between the skin and the flange. This formula requires an
expression for the shear lag stress distribution 7(x) as a function of
distance along the width of the rotated flange. This expression is given in
the preceding appendix, and is repeated here for completeness:

T(x) = N1toe K

Etsr ) e Kx (2)
Etfr+ Etsr

where
N1toe is the end load in the skin immediately under the toe. As

described in Appendix C, N1toe = Q.

Kﬂ/ (1 1
bxz Etir Etsy

¢dxz is the foundation modulus corresponding to the interlaminar
shear stress, a closed-form expression for which is given in the
next appendix,
Etsr = membrane stiffness of the skin,
Etsr = membrane stiffness of the flange.

Etsr and Etsy are measured in the direction of the diagonal tension fold.

and

1.2 Derivation of Equation for Peel r

Figures 3 and 4 display the notation, sign conventions, differential
equations, and boundary conditions for the coupled beam analysis. The
differential equations and boundary conditions differ from those of
Hetenyi [1946] by the inclusion here of the interlaminar shear stress, =,
between the skin and the flange. They were derived here by writing
equilibrium for the general differential element shown in Figure 3a, and
using the constitutive equations given in Figure 3b. Specific forms of the
differential equations and boundary conditions for the skin and flange are
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summarized in Figure 4. It to be observed from that figure that the
interlaminar shear stress appears in the boundary conditions, as well as
in the differential equations, and that the differential equations are
coupled. Because the solution of the coupled equations is straightforward,
it is presented more-or-less in outline form.

. ] ifferential ions (DE
DEf: DgWs + Oz(Wg - Ws) - lzf- T (3)
DEs: Dsrwg"-¢z(wf-ws)-%r‘ (4)

where()' =-d9—(x); t; and tg are flange and skin thicknesses; and Dfr and Dsg;
X

are flange and skin bending stiffnesses in the direction of the diagonal
tension fold (i.e., about an inplane axis normal to the direction of the fold).

- Boun nditions (B X =

Note that, because the interaction between the damped waves
emanating from the toe and heel is being neglected, boundary conditions at
the heel are unnecessary.

BC(1): Flange:M =0 = w," =0 (5)
BC(2): Flange: V=0 =

t¢ t¢ Etsr

Wi = T=0 = N1t K(—-——)

F 7o Dfr( X 2D1; 0 \Ety + Etsr.

or
Ozt

W, = C 6
t ™ KDy " (6)

where

Cn___N1toeK2( Ettr } (7)

2¢z Etfr + Etsr

M' Skin: M = Mtoe = _Dsrwsu

- wo =- “410% (8)
1)

BC(4): Skin: V = Wioe



= wg' =- Wioe | ﬁtic (9)
Dsr  KDsr

« Sojution For wt

Inserting
Ws = Wy + - Dgwy -J——f-':

0z 0z 2
from the DE for the flange (Eq. (3)) into the DE for the skin (Eqg. (4))

produces the following 8™ order DE for wy:

ﬁ"_f + 4p* dwy = - 02° [— ttDgr + tf + ts|Cne’Kx (10)
dx 8 dx ¢ D1Dsrl 02
where
B =[¢z (Dsr + Dsr)F (11)
4D¢Dsr
Complementary Solution of DE (Eq.(10)) for wy

The solution of the homogeneous form of Eq. (10) is
wi® = AePxcos (Bx) + BePxsin (Bx) + CePXcos (Bx) + DeP¥sin (Bx) +a + bx + cx2 + dx®
as may be verified by back-substitution into the DE.

Simplification: As described in detail above, we assume that
the decaying waves emanating from the toe and heel die out rapidly,
see Figure 1, so that there is no interaction between them. Thus, the
first two terms in the above equation must vanish, and these
conditions are satisfied by taking

A=B=0
so that complementary solution for ws simplifies to
<c>

= CeP*cos (Bx) + De'PXsin (Bx) +a + bx + cx? + dx3 (12)
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Particular lution of Eq.(4 for wi

A particular solution of Eq. (10) is readily shown to be

2
(p) - 1 ¢Z {Ki } -Kx
W = thsr+tf+ts Cqe
: {K‘(K‘+4B‘>] DrDsr 12z "
Let
m= 1 0 [& t Dsr + 1 + ts} (dimensions of length) (13)
K‘{K‘+4B‘) DtrDsr 102
wgp) = -mCpeKx (14)
Total Solution. wf = wi(c) + wy(P)

w; = Ce” Bxcos (Bx)+De” F¥sin (Bx) +a + bx + ox? + dx3 - mCne®*  (15)
« Solution For ws
From Eq. (3):

Wg = Wf+1—- DfrW'fm - -J—IQLT'
z bz
By using Eg. (15) to eliminate wy¢, and Eq. (11) to simplify the resulting

expression, we obtain

Wg =- Dﬂ[Ce' Bxcos ( BX)+ De B sin ( Bx] +a+bx +cx2+dx3- nCne-Kx (16)
Sr

where

n=(1+K4p—f—r)m-tf (17)

Zz

« Determine Arbitrary _Constants From BC'sat x =0

BC(1): Flange: M = 0 (Eq.(5)) =

I-6



-8°D+1mkK?
C—BD+2mK Cn (18a)

BC(2): Flange: V = 0 (Eq. (6)) =

D=-—_ Moe +(n_m)£_2_(%2ﬂcn (18b)
2[52(Dfr'f'[)sr) 2‘32 Dsr
BC(3): Skin: M = Mye (Eq. (7)) =
= - 13 1 2t _ K3 18
d--1p ‘C*D’?(LKD" mik?|cq (18¢)

BC(4): Skin: V = Wiee (Eq. (8)) =>{ \
-—1 +Woel [ Der | . mt K. 4], 02 ({t tslic

¢ 2B? (D 4r+Dsy) [Moe B ] Dfr"-Dsr)\(n ™ 2p? [B 1] 2[33K\fo DSF}[
(18d)

. | Str T X=
The peel stress at the toe is given by
Gz = (Opeel)x=0 = $Pz[W(0)-Ws(0)]

which from Eqgs. (15) and (16) becomes

Dtr+Dgr

sr

Oz = 0z C]+(n-m)Cn

By substituting for C from Eq. (18d) into this equation, and performing
some algebraic manipulation, we obtain the following expression for the
peel stress:

2 i | I A
=W, M tC, =i _11- H_ 4D
Oz (1+QSL [ toe+[3 toe]+¢zf n‘K 1+_QsL) [ (I)z }{ 2[32 +2B3}
Dfr Dfl'
(19)

where the dimensionless parameter
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m' =M
te (20)
has been introduced, and m is given by Eq. (13).

o, can be conveniently subdivided into two parts: the first, ©zq, is
due directly to the moment Mioe and the transverse shear Wioe applied from
the skin; and the second, G,p, is caused by the shear along the interface
between the skin and flange acting at half the laminate thickness away
from the midplane of each laminate. The two parts of the peel stress are
given by

Oz = Oz1 + Oz2

where
2P

Cqp1 = Wige + B M 21

z1 T +Dsr/Dfr)( 1oe + B Mioe) (21)
and

G0 = Cn tf 0z (F1 + F2) (22)
and

2 3 . 4
F1=(1- <, KS)(m Dir K _1)
2B 2B 0z

F2 - 2 ﬁ Dfl’ (D sr/Dfr - tj/tf)
K Dfr + Dsr
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APPENDIX J

FOUNDATION MODULI

Expressions for the interlaminar shear stress, 7Txz, and peel
stress, Oz, between the skin and the attached flange are derived in
Appendices H and |, respectively. These expressions contain terms
involving two “foundation modulii” corresponding to Txz and 6. A
simple model is used in the present appendix to obtain closed-form
equations for these modulii. This is done by summing up the
flexibilities of the layers between the midplanes of the skin and
flange under the assumption that the stresses are uniform between
the midplanes. More complex derivations are not justified within
the framework of the overall simple approach adopted in this work.

J.1 Foundation Modulus Corresponding to Peel Stress

Figure 1 depicts a cross section of the attached flange and
skin. The cross section is in the diagonal tension direction, x, and is
in the plane normal to the skin. A peel stress, Gz, acts in the out-
of-plane direction, z, on a unit area. Under the above assumptions,
the extension of the midplane distance due to 6, can be written as:

seeaftfi] o) gy ]
2\E3/flange ‘Eladhesive \E3kace Elcore

In this equation, t denotes laminate thickness, Eis Young’'s modulus
for the isotropic adhesive and core materials, and E3is the out-of-
plane modulus for the flange and skin layers. (By assuming
transverse isotropy for tape layers, we may take E3 = E2, where Ez is
the layer transverse modulus).

The foundation modulus corresponding to the peel stress is
given by

0z =92 - 1 (1)
5, 1 1_) + (L) + _t_) + qq
2\E3 flange Eladhesive \Ezltace 2'E/core
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J.2 Foundation Modulus Corresponding to Interlaminar Shear
Stress

The foundation modulus corresponding to the shear stress 1x;
is found similarly. The displacement in the x direction of the skin
relative to the flange is

_1_) L) }
Gefttace 2'Glcore

sz +

[y
Geff flange ‘'Gladhesive

In this equation, G denotes the usual shear modulus for the isotropic
adhesive and core materials, and, for the laminates

where Gy is a through -the-thickness shear modulus for the i layer,
and the summation is over the number of layers n in the laminate. In
the case of tape layers, the values of Gy depend on layer
orientation. However, the value of Txz is not overly sensitive to this
variation, and it is simplest to use Gi13 (subscript “1” pertains to
the fiber direction) for all tape layers regardless of orientation.
This simplification slightly overestimates the shear stiffness and
so overpredicts Txz. For fabric layers G13 = Gy2. Thus, for both tape
and fabric layers, we take Gefi= G13.

The foundation modulus corresponding to the interlaminar
shear stress is

= = — 1 >
¢XZ ax 1J___ t _t__) +1t ()

+Y )
2 G13)ﬂange Gladhesive \G13ltace 2'Glcore
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J.3 Sensitivity Results

The effect of increasing ¢z by 30% for the C1 panel (the most
significantly affected panel) is to increase the maximum principal
tensile stress at the toe, Ompt, (used to calculate failure, see
Appendix L) by only 1.3%. Increasing ¢xz for C1 by 30% increases
Ompt by 54% The use of the simple formulae given above is

therefore justified.
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APPENDIX K
STRESS ANALYSIS OF THE CRITICAL PLY

The objective of this appendix is to determine the surface tension
stress at the toe, oy, acting in the direction of the diagonal tension fold in
the “critical ply” of the skin. The critical ply is defined as follows: it is
on the stiffener side of the skin; it is put into tension along the diagonal
tension fold by the membrane load, the bending moment, and the
transverse shear force acting in the skin at the toe of the flange; and it's
fibers lie across the direction of the diagonal tension fold. Finally, to be
conservative, i.e., to obtain the highest possible value for ¢, we assume
that the critical ply is at the surface immediately under the toe of the
attached flange. The stress oyis determined from the strain components
derived next.

+ Strain

We define a system of inplane axes (x, y) at the middle surface of
the skin with the x axis parallel to the direction of the diagonal tension
fold, and the y axis being normal to it. Therefore, the strain g, in the
direction of the diagonal tension fold, on the surface of the skin, is the
strain normal to the fiber direction of the "critical® ply. The strain &y
normal to the diagonal tension fold, in the plane of the skin, on the surface
of the skin, is the strain in the direction of the fiber of the "critical" ply.

The internal loads in the skin laminate near the toe are a tensile
stress resultant Nitoe in the x direction, a compressive stress resultant
Nowe in the y direction, a moment Mg about the y axis, and a transverse
shear force Wioe (see Figure 1 of Appendix ). These loads cause
membrane strains ex and ey in the midplane of the skin laminate and
curvatures xy and Xy. The surface strains in the x and y directions are

£x=ex+-t2§1<x (1)
and
8y=ey+-t2iKy (2)

where ts is the skin thickness.

K-1



From standard lamination theory [e.g., Grumman Advanced Composite
Structures Manual], and with the assumptions that

. the skin laminate is balanced and symmetric,
. the bending/twisting coupling terms are small, and
+ the curvature Ky about the x axis is zero,

it is straight forward to show that curvature about the y axis is therefore

Ky = Mie (3)
sr

The surface strains may then be written as

£ = Nxto -VSTEM+MEQ_£§ (4)
Etsr Etsr Dsr 2

&y _ Nytoe _ ver Nxtoe (5)
Etsr Etsr

In these equations, Nyoe and Nypoe are the stress resultants in the skin
near the toe (see Figure 1 of Appendix B). The skin laminate properties
are relative to the diagonal tension axis system, with subscript “r”
pertaining to the “rotated” axis system (x, y), which makes an angle of 45°
relative to the structural axis system. Ets, is the skin membrane
stiffness in the x direction, Dsr is the neutral axis bending stiffness of
the skin about the y axis, and vgr is Poisson’s ratio for the skin laminate.
(Vsr = Vxy is defined according to Vxy Ey = Vyx Ex, where Ex and Ey are
engineering constants for the skin laminate). .

» Stress

The stress oy in the critical ply, in the direction of the diagonal
tension fold, and therefore normal to the fiber direction, is related to the
above strains by

E2

m(ﬁx + Vi2 &y) (6)

Ox =
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where Eq, E2, and v, are the in-plane Young's modulii and Poissons ratio
for the face ply of the skin. The subscript “1” when affixed to a material
property pertains to the fiber direction, and the Poisson’s ratio v{s is

defined according to v42 E2 = voq Ej.

Substituting Eqgs. (4) and (5) into Eq. (6), and recalling that the
stress resultants in the skin at the toe are defined in Appendix C as

Nxtoe = N1toe = q (i.e., Nxtoe is tensile, and g>0)
and
Nytoe = -N2toe = -Q (i.e., Nyioe is compressive, and q>0),

we can write the equation for 6y as

E q ts M
Cy=—-=2 |[{1-v 1 . Is Moe 7
X (1 -V12V21) ( ! 2)( +vsr) Etsr * 2 Dsr ( )
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APPENDIX L
FAILURE CRITERION

Previous appendices describe a method whereby the state of stress
in the critical ply under the toe of the stiffener flange may be rapidly, if
approximately, estimated. It remains to develop a failure criterion for
this ply in order to estimate the failing strength of the stiffened panel.

» Maxi Inci ile Str

The three stress components Txz, 6z and Gy , derived in appendices H,
I and K respectively, are combined to give the following maximum
principal tensile stress in the surface ply immediately under the toe of
the attached flange:

o (2552 {2525+ caf
. ilur riterion

Examination of photomicrographs of ply cross sections shows that
for graphite/epoxy the placing of the fibers within such a section is
random, and it is impossible to discern the orientation of the
photographed section within the ply without other, external, clues. We
may therefore assume transverse isotropy, and that the tensile strength
at any orientation in the xz plane is equal to the transverse tensile

strength thu of the layer, which can be more-or-less readily found from
coupon tests on a laminate consisting of all 90° plies.

Failure is assumed to occur when the maximum principal tensile
stress, from Eq. (1), in the critical layer in the skin immediately under the
toe reaches the transverse tensile strength F‘g” of the layer, i.e. when

t
Ompt = F2. (2)

Failure of this layer constitutes failure of the joint, because cracking of
the matrix allows the fibers to be pulled out of the skin surface. This
type of failure was observed on all of the panels tested.

The following values used in the analysis of the test panels are
based on statistical analysis of 19 coupon test results for transverse

L-1



tension of IM6/3501-6 graphite/epoxy tape, in the room temperature,
ambient, moisture (“dry”) condition [Shyprykevich, 1988]:

Fi = Mean strength = 7150 psi
Standard Deviation = 1180 psi
"B-basis" allowable stress = 4460 psi

where the B-basis allowable strength is such that at least 90% of the

transverse tensile strengths are expected to exceed the B-basis allowable
value, with a confidence of 95%.

L-2



APPENDIX M

THE SNAPPS CODE

A Preliminary Design Code for Predicting the
Nonlinear Response & Stiffener Separation of
Postbuckled, Flat, Composite Shear Panels with
Sandwich & Non-Sandwich Skins, Based on a
Simplified Analysis Method

The analysis methodology described previously in this report
is based on a number of modular *“strength-of-materials-type”
models. These models are used to derive simple, closed-form
equations that can easily be used in a "hand analysis". For
expediency, they have been programmed into a preliminary design
code called SNAPPS using the True Basic language. Being such a
simple language, True Basic readily permits users to modify
SNAPPS to suit their individual needs such as, for instance, to echo
more input data or to provide more output. Alternatively, because
SNAPPS requires a minimum of input data, and consists of only a
relatively small number of executable statements (less than four
dozen) of coding of the equations, it should be an easy task for users
to program SNAPPS in another language or spreadsheeet (such as
MicroSoft Excel) of their choice.

The next portion of this appendix gives a listing of the True
Basic code. This listing also serves as a self-contained "User’s
Guide” that has many annotations, along with cross-references to
other appendices for further details.  Also provided is the input data
for three tested shear panels (A1, B1, C1), which are the sample
problems. These panels are described fully in Appendix A, and are
used in Section 3 to compare predicted and measured results.
SNAPPS output for the test panels are presented in the remaining
portions of the current appendix.



AU 5 L e e i

1M.1 SNAPPS Code Listing & "User'S Guide"™

Gem e G tee G S dem v Y= e S A ¢

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
i SNAPPS (Version 1.0, April 1997) Qe
(]l (Speedy Nonlnear Analysis of Postbuckled Panels in Shear) @ee
Q@ BY DAVE SHARP & LARRY SOBEL ee
@e @e
@@ A SIMPLIFIED ANALYSIS, PRELIMINARY DESIGN CODE FOR RAPIDLY Q@
@@ PREDICTING THE NONLINEAR RESPONSE & STIFFENER SEPARATION Qe
@@ OF POSTBUCKLED, FLAT, COMPOSITE SHEAR PANELS WITH SANDWICH @@

@@ OR NON-SANDWICH SKINS ) @e
A e ddddddeddddddelddedddeddddddddddddadddadadde

'************************’k************************i’***i*******

I x*kkkkkxkhk*k** kX *x**DIMENSION & DATA STATEMENTS ok e ek ok ok ek K ok ok k
X%k *x***x***xFOR GETTING RESPONSES FOR DIFF VALUES of q *kkkkxx

The argument in the following dimension statements is the number

of values of the shear flow, g. Response variables, such as stresses,

are computed for each value of g. The argument can be one,

if results for just one value of q are desired.

g(30), qratio(30), c(30),1b(30), Delta(30), Mtoe(30), Wtoe(30)

N1(30), Lambda(30), ThetaTierodDeg (30), DeltaThetaDeg(30)

SIGzTOE (30), TAUxzTOE(30), SIGxTOE(30), SIGmptTOE (30), STRAINx(30),STRAINy(30)
STRAINXMICRO(30), STRAINyMICRO(30)

!
t
1
!
!***************************************‘k*********************
1
1
1

!***************************‘k*********************************

Thkkkkkkkkxx*xxxxx**READ IN VALUES OF SHEAR FLOW, q ****kkkkk*
!*************************************************************

MAT READ q ! NOTE: q must always be positive (App. C)

'DATA 634,700,791.2,800,850,900,950,1000,1050,1100,1149,1200,1300,1403,1500
!DATA 1550,1600,1650,1700,1750,1800,1850,1900,1950,2000,2050,2100,2150,2200,2250
IDATA 302,325,350,375,400,425,451.14,500,550,600,650,700,735,750,800,838,850
'DATA 900,950,1000,1050,1100,1150,1200,1250,1300,1350,1400,1450,1500 '

DATA 63.5,70,75,80,85,90,95,100,150,200,250,300,350,400,467.8,500,550

DATA 600,650,709,750,800,850,900,950,962,1000,1050,1100,1199

' —

|*************************'k***********************************
!******************* READ IN REST OF INPUT DATA % % K %k ok ok ok ok ok k k ok ok ok

I*************************************************************

'#
'#
Y4
12 ]
X ;
'#
'$

V¥

!
!##########*#####################################################################
#

COMMENT ON AXIS NOTATION (App. C) .

The long (tension) direction of the diagonal tension (DT) fold is denoted #
by x, and the in-plane direction normal to the DT fold is denoted by Y. #
Most input laminate stiffness properties are referred to the DT x axis. #
These properties are called "rotated™ properties, and are subscripted #
by "r" to so designate them (rather than use double subscripts "xy"). #
For example, Dsr is the bending stiffness of the skin IN the DT #
direction (which is the x axis), or eqivalently, ABOUT the y axis. #

#

i###############################################################################
I

READ qcr,btt,Lf

!
!
!
!
!
!
!
!

gcr=Initial buckling value of shear flow
gcr is always positive (see App. c).
btt=Tot-to-Toe Width of Skin, measured normal
to the direction of the stiffener
(See Figure 1 of App. D).
Lf=the heel-to-toe width of the attached flange,
measured normal to the stiffener direction.
{See Figure 1 of App. D).

ﬁEAD tf,ts,tc,ta ! Thicknesses for flange, skin, core, & adhesive.
READ E3f,E3faceply,Ec,Ea ! out-of-plane Young's Modulii for flange ply,

M-2

1Al
'Al
'Bl
'B1
!C1
'Cl



1

!

!

READ Gt,Etfr,Etsr,NUsr

1
1
1
'
!
!
!
!
4
!
READ Dfr,Dsr,Dtotr
1
1
1
1
1
!
1

!Al Data,

!DATA
!DATA
'DATA
!'DATA
'DATA
'DATA
'DATA

!Bl Data,

'DATA
'DATA
!'DATA
'DATA
'DATA
IDATA
'DATA

'Cl Data,

face ply of skin,

core, & adhesive.

(E3 is in dir normal to plane of skin).
READ G13f,Gl3faceply,Gc,Ga ! Out-of-plane Shear Modulii for flange ply,

face ply of skin,

core, & adhesive.

("1" pertains to fiber direction) .
READ Elfaceply,E2faceply,NUl2faceply

Thus,

system, x'

gfailtrest 1403,
634,9.5,0.75
0.072,0.1172,0.050,0.008
1.60E6,1.30E6,0.38E6,0.30E6
0.64E6,0.80E6,0.15E6,0.12E6
20.5E6,1.30E6,0.35
0.2612E6,0.4658E6,0.6302E6,0.206
248.1,1215,4574

gfailtest
302,9.5,0.75
0.0576,0.0848,0.040,0.008
1.60E6,1.30E6,0.38E6,0.30E6
0.64E6,0.80E6,0.15E6,0.12E6
20.5E6,1.30E6,0.35
0.1418E6,0.4080E6,0.3702E6,0.305
132.5,479.9,1961

gfailtest= 962, gpred= 1199,

838, qpred=735.0,

DATA 63.5,15.5,0.75

DATA 0.0432,0.0648,0.
DATA 1.60E6,1.30E6,0.
DATA 0.64E6,0.80E6,0.
20.5E6,1.30E6,0
0.1388E6,0.3454E6,0.3626E6,0.306
58.5,249,1038

DATA
DATA

020,0.008
38E6,0.30E6
15E6,0.12E6
.35

It I I I I I L T I I I L T A I L I 1 1 i 11y 1111111
SNAPPS ANALYSIS OF PANEL C1
(Version 1.0,

"E&EEEELEEEEEEESES
"LEEEEEEEEEEGEEES

if E1>EZ2,

Gt=Skin shear stiffness in the global,

A

parallel and normal to the stiffener direction.
Etfr=rotated membrane stiffness of flange.

Etsr=rotated membrane stiffness of skin.
EA for a laminate is computed as follows:

* EA=(engineering constant for laminate)*

(laminate thickness) * (unit width)

NUsr= rotated Poisson's ratio relative to DT direction.

(NUsr=NUxy defined according to NUxyEy=NUyxEx) .

gqpred=1149,

!
!
!
!
!

!

In-plane Young's Modulii and Poisson's Ratio for face
ply of skin (NUl2 defined according to NU12E2=NU21El.
then NU12 is the major Poisson ratio).

(App. C). This system 1is

Dfr=rotated bending stiffness of flange
about neutral axis.

Dsr=rotated bending stiffness of skin
about middle surface.

Dtotr=rotated bending stiffness of combined (total)
skin and flange laminates

abeut neutral axis of total stack.

gallow=791.2

' qcr,btt,Lf

tf,ts,tc,ta

E3f,E3faceply,Ec,Ea
G13f,Gl3faceply,Gec, Ga
Elfaceply,E2faceply,NUl2faceply
Gt,Etfr,Etsr,NUsr

Dfr Dsr,Dtotr
qallow—451 14

! ger,btt,Lf

tf,ts,tc,ta

E3f,E3faceply,Ec,Ea
Gl13f,Gl3faceply, Gc,Ga
Elfaceply,E2faceply,NUl2faceply
Gt,Etfr,Etsr,NUs

Dfr Dsr,Dtotr

qallow—467 8

! qcr,btt,LE

tf,ts,tc,ta

E3f,E3faceply,Ec,Ea .
G13f,Gl3faceply, Gc, Ga
Elfaceply,E2faceply,NUl2faceply
Gt,Etfr,Etsr,NUsr

Dfr,Dsr,Dtotr

April 1997)

Mhhkhkkhkhkkhkhkhkhkhkhkhhkhkkhhkhhkhkhhkhhkhhkhkhkhkhkkhkhkhkhkhkhkhhkhkkhkhkkhkhkn

MEREkEI XXXk Xk X k% ECHO SELECTED INPUT

Kok ok okkkkkkkkhkk

MWhhkkkhkhkkkhkhkhkhbhhkkhkhkhkhhkkhhkAhkkhkhkhkhkkhkkhkhkhkhhhkhkhkhkkkkkhkk

"Initial Buckling Shear Flow,
"Toe-to-Toe Width of Skin, btt

"Flange Width (normal to stiff dir.),

"Thickness of Flange, tf

gcr

";gcr;"lb/in. "
"obtt;"in, ™
"’.Lf;"in.“
“’.tf’.llin.ll

Lf

M-3
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PRINT "Thickness of Skin, ts ";ts:;"in. "

PRINT "Thickness of Core, tc st "in.m
PRINT "Thickness of Adhesive, ta ";ta;"in."
PRINT "Shear Stiff of Skin relative to global axes, Gt";Gt;"1b"
PRINT "Memb Stiff of Flange in dir of DT fold, Etfr ";Etfr;"1b"
PRINT "Memb Stiff of Skin in dir of DT fold, Etsr ";Etsr;"1b"
PRINT "Bend Stiff of Flange in dir of DT fold, Dfr ",;Dfr;"1b-in."
PRINT "Bend Stiff of Skin in dir of DT fold, Dsr ":Dsr;"lb-in."
PRINT

!*************************************************************

txkxx*%*x* Compute Geometric Variables (independent of g) ***x*x
!*************************************************************

LET cosdt = 1/sqr(2) ! Assumed angle of diagonal tension is 45¢

LET L = btt/cosdt 1 1 = toe-to-toe length of buckle in direction of
! diagonal tension fold.

LET Lfr = Lf/cosdt ! Lfr is width of flange in direction of

! diagonal tension fold.

! ************************‘k************************************

I
!
1 kk*k**x***GET RESPONSES FOR DIFF VALUES OF q *****kdxkkdixix
!
1

*****i*******************************************************

! The upper range for the index i in the following "DO"™ LOOP must be the same as
! the DIMENSION statement for g. The upper range can be one,
! if results for just one value of g are desired (change
! DIMENSION & MATRIX DATA statements accordingly).
! #######################################################
! # CHANGE UPPER RANGE OF INDEX FOR i #
! # TO MAKE IT EQUAL TO THE NUMBER OF q VALUES #
! #######################################################
! I
FOR i =1 to 30 step 1! |
I |
| |

% & %k % % J ¥ ok %k Kk Jk %k % ok Kk ok Kk ok k STRESS RESULTANTS Nl, N2' (App. C)**************************

LET qratio(i) = q(i)/qcr ! Computed for printout only
LET N1(i) = 2*q(i)-qcr ! N1 is the diagonal tension pull in the direction of
! the DT fold.

LET N2 = gcr ! N2 is the compressive resultant normal to the fold.

! Recall that gcr is always positive. Thus, N2 is positive
! when it 1is in compression.

]

| *%kk**** WAVEWIDTH c & WAVELENTH Lb, (ARpp. D); Max Disp, Delta (App. E)**x¥xxxxx
1

LET c(i) = sqr(l.5)*L*sqr(N2/N1(i))/(l+sqr(N2/N1(i))) ! ¢ is width of DT fold.
LET 1b(i) = c(i)/cosdt ! Lb is axial wavelength, computed for printout.
LET Delta(i) = (2/pi)*sqr(c(i)*L*(q(i)/Gt-gcr/Gt)) ! Max out-of-plane disp.

| ****BENDING MOMENT Mtoe, & TRANSVERSE SHEAR FORCE AT TOE, Wtoe (App. G) ***Xx*x*x
LET Lambda(i) = sqr(N1l(i)/Dsr)

LET ztotr = (Etfr*(ts+ta+tf/2) + Etsr*ts/2)/(Etfr+Etsr)

! ztotr is distance of neutral axis of skin + flange model

! from skin outer face (skin side of panel).

LET z = ztotr - ts/2

! z is "eccentricity" distance from middle surface of skin to

! neutral axis of skin + flange model.

LET NUM (pi*Delta(i)/L)*((Nl(i)*Lfr“2)/(2*Dtotr)-1.0)-(q(i)*Lfr*z)/Dtotr

LET DEN Lambda (i) /N1(i) + Lfr/Dtotr + pi/(Nl(i)*L)*((Nl(i)*Lfr“Z)/(2*Dtotr)-1.0)
LET Mbar = NUM/DEN ! moment on tierod at toe

LET Wtoe(i)= (pi/L)*(N1(i)*Delta(i)-Mbar)

LET Mtoe(i) = -Mbar

1

| kkkkkAk*kkkkkkkkkkk%xxx ROTATION AT TOE, Theta (for printout), (App. G) X***&xkkxkix
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!

LET ThetaFlangeRad = -{(Mbar+q(i)*z)*Lfr/Dtotr+(Wtoe(i)*Lfr~2)/(2*Dtotr)

LET ThetaTierodRad = (Lambda(i)*Mbar) /N1 (i)+Wtoe (i) /N1 (i)

LET ThetaFlangeDeg = (180/pi) *ThetaFlangeRad

LET ThetaTierodDeg(i) = (180/pi) *ThetaTierodRad

LET DeltaThetaDeg (i) = ThetaFlangeDeg - ThetaTierodDeg(i) ! check on compatibility
!

] *kkkkkkkkkkkxkxx*x INTERLAMINAR SHEAR STRESS AT TOE, TAUxzTOE (App. H) ****sxkkkxkkkkk
!

LET tface=0.5*(ts~-tc) ! Thickness of face sheet. (This equation applies to

! laminates without a core in which case

! the "face" thickness is half the skin thickness).

LET Phixz=1/[0.5*(tf£/G13f)+(ta/Ga)+ (tface/Gl3faceply)+0.5*(tc/Gc)]

! Phixz is foundation modulus corresponding to shear stress (App. J).

LET K = sqr(Phixz* (1/Etfr+l1/Etsr))

LET TAUxXzTOE (i) = q(i)*K*Etfr/(Etfr+Etsr) 'In DT axex.

1

I Xk kkkkkkkkkkkkk*k*xx*%* PEEL STRESS AT TOE, SIGZTOE (App. I) **¥*xkkkkkakdkdkkkkkhkk
1

LET Phiz=1/{0.5*(t£/E3f)+(ta/Ea)+(tface/E3faceply)+0.5* (tc/Ec)]

! Phiz is foundation modulus corresponding to Peel Stress (App. J)
LET Beta = (Phiz* (Dsr+Dfr)/4/Dsr/Dfr)*0.25

LET SIGzl = 2*Beta* (Wtoe (i) +Beta*Mtoe(i))/(1+Dsr/Dfr)

! SIGzl = Peel Stress due to Mtoe & Wtoe
LET Cn = g{i)*K"2*Etfr/2/Phiz/ (Etsr+Etfr)

LET mstar = (Phiz/Dsr/Dfr/K~4)* (Dsr*K”~4+Phiz*(1l+ts/tf))/(K*4+4*Beta”4)
LET F1 = (1-K"~"2/2/Beta~2+K~3/2/Beta”3)*(mstar*K~4*Dfr/Phiz-1)

LET F2 = 2*Beta*Dfr* (Dsr/Dfr-ts/tf) /K/(Dfr+Dsr)

LET SIGz2 = Cn*tf*Phiz* (F1+F2) ! Peel Stress due to shear stress.
LET SIGzZTOE(i) = SIGzl + SIGz2 ! Total Peel Stress.

l

**%*%%*** STRAINS AT TOE IN CRITICAL PLY, STRAINX, STRAINX (App. K) *****kkkkkkkx

l

l

! In what follows, (1) the x axis is in the direction of the DT fold, (2) the

! in-plane y axis is in the direction normal to the direction of the DT fold,

!' and (3) the CRITICAL PLY is defined as follows: its fibers are normal to the

!' direction of the DT fold, it is the outermost skin ply on the stiffener side

! of the skin, and it is conservatively assumed to be at the surface of the skin.
LET STRAINxX({i) = q(i) /Etsr-NUsr*(~-g(i))/Etsr+(Mtoe(i))*ts/2/Dsr

! STRAINx is the tension strain in the critical ply.
! It is in the direction of the DT fold,

! and is normal to the fiber direction.

LET STRAINy(i) = -gq(i)/Etsr-g(i)*NUsr/Etsr

! STRAINy is the comp strain in the critical ply.

! It is in the direction normal to the DT fold,

! and it is in the fiber direction.

LET STRAINXMICRO(i)=STRAINx(1i)*1.0E6 'in units of microstrain for printout

LET STRAINYMICRO(1)=STRAINy(i)*1.0E6 'in units of microstrain for printout

L]

| k*x#xxk%xk*x**x* TENSION STRESS AT TOE IN CRITICAL PLY, SIGXTOE (App. K)***#*%*%xkx
1

LET NU21faceply = NUl2faceply* (E2faceply/Elfaceply)

LET Q22faceply = E2faceply/ (1-NUl2faceply*NU21faceply)

LET SIGXTOE (i) = Q22faceply*STRAINx(i)+NUl2faceply*Q22faceply*STRAINy (i)

! SIGxTOE is the tension stress in the critical ply.

! It is in the direction of the DT fold,

! and is normal to the fiber direction.

§

I *kdkkkkkkkkkkxkxx MAX PRIN TENSION STRESS AT TOE, SIGmptTOE (App. L) ***xxikdkkkk&xkkx
1

LET SIGmptTOEl=(SIGzTOE (1)+SIGXTOE(i)) /2

LET SIGmptTOE2=SQR(((SIGzZTOE(i)-SIGxTOE(i)) /2) ~2+TAUxzTOE (i) *2)

LET SIGmptTOE (i)=SIGmptTOEl+ SIGmptTOE2

! SIGmptTOE is the max prin tension stress at the toe of the flange.

! It acts in a plane in the DT direction that is normal toc the skin.



'
l*************************************************************

l******************* PRINT OUTPUT RESULTS ***%kkkkkkdkkkkxkkkx
1*************************************************************

!
1
! Hence, for maximum efficiency they could have been computed outside the

i

! compute them in the analysis sections where they belong, and (2) the code
! runs very fast, so it really doesn't matter.

PRINT
PRINT Mk kkhhk Ak khkhhhkk ko kkk kAR A khhkhhkkhkhkhhkhkkkhkhkkkkhkkkkhkkin

PRINT "***x**% SELECTED SCALAR OUTPUT RESULTS Kk kkkkkxn

PRINT "*x**x*x** (Quantities That Don't Vary with g) *¥**x**x*xu
PRINT "*'k********************i***************************"

PRINT

PRINT "Toe-to-toe Length of Diagonal Tension Fold ";L;"in."

PRINT "Thickness of Face ";tface;"in."”

PRINT "Thru-Thickness Foundation Modulus v;Phiz;"1lb/sg in./in."
PRINT "Interlaminar Shear Foundation Modulus ";Phixz:"1b/sq in./in.
PRINT "Beta, Die-away Rate for Flatwise Tensile Stress";Beta;"1/in.”

PRINT "K, Parameter in Kuhn Shear-lag Analysis ":K;"1/in."™

PRINT

PRINT

PRINT Mok kdkhkkkhkhkhhkhhkhkhhkhkhkdkhkhkhkkkdkhhkkhkhhkhhhkkkdkkdkhhkhkkkhkhhkk kW

PRINT "*******% SELECTED MATRIX OUTPUT RESULTS * %k ok ok ok

PRINT "******x*x (Ouantities That Vary with q) e ek ok sk Rk k1
PRINT l‘l*'k************************************************"
PRINT

PRINT

PRINT "Applled Shear Flow, g, lb/in."

PRINT "-==——==e=——e——soo—r————m=m———— "

MAT PRINT g

PRINT "Ratio of Applied Shear Flow to its Critical Value, q/qcr“
PRINT M em e m e m e e e e e e e e e e e e e e e e e e e e s ST SS ST
MAT PRINT gratio

PRINT "Transverse Width of Buckle, ¢, in."

PRINT "===we=meswemmwo—=so=—w=- ———————————— "

MAT PRINT cC

PRINT "Buckle Wavelength (projected along stiffener), Lb, in."

MAT PRINT Lb

PRINT “Maximum Out-of-Plane Displacement of Skin, Delta,in.”
PRINT "e=me——=—————m——e——eso———ee-= e — e ——————
MAT PRINT Delta

PRINT "Axial Load in Tie-Rod model,N1l,1b/in."

MAT PRINT N1

PRINT "Lambda, Wave Number in Tie-Rod Analy51s, 1/in."
MAT PRINT Lambda

PRINT "Skin Bending Moment at Toe, Mtoe, in.-1b/in."

MAT PRINT Mtoe

PRINT "Transverse Shear Force in Skin at Toe, Wtoe, 1b/in."
PRINT "=-———————— s e R S e == o
MAT PRINT Wtoe

PRINT “Rotation at End of Tie-rod Model, ThetaTierodDeg, deg."

MAT PRINT ThetaTierodDeg
PRINT "Compat. Check: Tie-rod Rotation- Skln/flange Rotation, DeltaThetaDeg,

MAT PRINT DeltaThetaDeg
PRINT " In-plane Tens Strain in Critical Ply, STRAINx, micro in."

MAT PRINT STRAINXMICRO
PRINT " In—plane Comp Strain in Critical Ply, STRAINy, micro in.

MAT PRINT STRAINYMICRO

Note the following output variables (and others not shown) do not depend on g.

DO loop on the g values. However, this was not done because (1) we prefer to

"w



PRINT "In-plane Tens Stress in Critical Ply, SIGxTOE, 1lb/sq in."
PRINT "--—-—=-——m—mm - mm e e e -
MAT PRINT SIGxTOE

PRINT "Peel Stress at Toe, SIGzTOE, 1lb/sqg in."

PRINT "= e s e e e e m e e n

MAT PRINT SIGzTOE

PRINT "Shear Lag Stress at Toe, TAUxzTOE, 1lb/sg in."

PRINT "-——————-ermerreer e cc e r e e e e e e "

MAT PRINT TAUxzTOE

PRINT "Maximum Principal Tensile Stress Under Toe, SIGmptTOE, lb/sqg in.™
PRINT Mem— s mer e e e e e e —— = —————
MAT PRINT SIGmptTCE
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M.2 SNAPPS Output for Panel Al

G666 5EEEE68E668668865558656868866588688888668G8E85EGEEEEEE&ELELEEELES
L&E&EGEELEELESSS SNAPPS ANALYSIS OF PANEL Al &&E&ELEEEELSEESE
LEEEEELEEEELESELS (Version 1.0, April 1997) &E&&EELEESELESES
EE5666566666866668888888666568886886888665856868868866685686&LEEEEEELSES

Ak hkhhkdkhkhkhhdhkhdhhkhkhkrkkhdkhhkkhhkhkhhkxdkrhkhkhhhhkhhkhhkhhkkhk

*kkkkkkkkkkkx* ECHO SELECTED INPUT dhkhkkkkkhkkkkkki
khkhkhhkdkhkhhkhkhkhkhdkhkhhkhkkrkhkhdhkhhhhkkkhhkhkhkkhhhkdhhkhkkhkhhk

Initial Buckling Shear Flow, qcr 634 1lb/in.
Toe-to-Toe Width of Skin, btt 9.5 in.
Flange Width (normal to stiff dir.), Lf .75 in.
Thickness of Flange, tf .072 in.
Thickness of Skin, ts .1172 in.
Thickness of Core, tc¢ .05 in.
Thickness of Adhesive, ta .008 in.
Shear Stiff of Skin relative to global axes, Gt 261200 1b
Memb Stiff of Flange in dir of DT fold, Etfr 465800 1b
Memb Stiff of Skin in dir of DT fold, Etsr 630200 1b
Bend Stiff of Flange in dir of DT fold, Dfr 248.1 1b-in.
Bend Stiff of Skin in dir of DT fold, Dsr 1215 1b-in.

Adkkkhkhkhhhhkhkhhkhkkhkhkhkkkkhkhkhkhkdkhdkrhkkkxdkhkhkdhhhkkkhkkik

*%*x**k%x* SELECTED SCALAR OUTPUT RESULTS %k ok ok ok ok ok ok

**x*x%*%x* (Quantities That Don't Vary with q)******>*
**************************************************

Toe-to-toe Length of Diagonal Tension Fold 13.435 in.
Thickness of Face .0336 in.
Thru-Thickness Foundation Modulus 7.10216e+6 1b/sqg in./in.
Interlaminar Shear Foundation Modulus 3.01583e+6 lb/sqg in./in.

Beta, Die-away Rate for Flatwise Tensile Stress 9.63497 1/in.
K, Parameter in Kuhn Shear-lag Analysis 3.3556 1/in.

khkhkhkhkhkhkhhkhhhhhkhkhkhrkkkhhkhhkhkhkdhkhkhkkhkhkhhhdrhhkkdhrhk

**x**%x* SELECTED MATRIX OUTPUT RESULTS Fk ok k Ak

**x*x** (Quantities That Vary with q) %k g ok ok kK ok
**************************************************

Applied Shear Flow, g, 1lb/in.

634 700 791.2 800
900 950 1000 1050
1149 1200 1300 1403
1550 1600 1650 1700
1800 1850 1500 1950
2050 2100 2150 2200

Ratio of Applied Shear Flow to its Critical Value, g/gcr

@ ——_— — — = —— T o~ A T S T S A S S el e e

1 1.1041 1.24795 1.26183
1.41956 1.49842 1.57729 1.65615
1.8123 1.89274 2.05047 2.21293
2.44479 2.52366 2.60252 2,68139
2.83912 2.91798 2.99685 3.07571
3.23344 3.3123 3.39117 3.47003

Transverse Width of Buckle, ¢, in.

M-8

850

1100
1500
1750
2000
2250

.34069
.73502
.36593
. 76025
.15457
.5489

W WK N



7.4017

6.66755
5.95972
5.39381
5.08693
4.83295

.36427
.52794
.77166
.32727
.03245
.78714

BUTno

stiffener), Lb, in.

11.6351
9.87639
8.88152
7.82926
7.35717
6.971

11.0853
9.64327
8.71875
7.72634
7.27401
6.90176

10.4147
9.23189
8.16236
7.5339

7.11696
6.77004

.196786
.259659
.325135
.355599
.381447

.103849
.211939
.269706
.331689
.361085
.386191

.155742
. 225547
.287649
.337993
.366402
.390812

Axial Load in Tie-Rod model,N1,1lb/in.

———————— —— - — 0 i > W T ———— ——

.722365
.979628
.17028
.42465
.56242
.68899

(-

Skin Bending Moment at Toe, Mtoe,

.794011
1.02077
1.20561
1.45325
1.58854
1.71318

.883502
1.06032
1.27205
1.4813

1.61424
1.73703

in.-1b/in.

105.669

Transverse Shear

42.4791
62.3698
81.3274
95.8145
102.678
107.242

.159636
.23792%
.304177
.344068
.371561
.395318

966

1466
2172
2766
3266
3766

.891662
.09845
.33703
.50882
. 63853
.76056

P

43.5241
66.112
86.2848
97.392
103.763
107.91

Force in Skin at Toe, Wtoe, lb/in.

-.274466

.163239

.419363

M-9

.440586

.16445
.39846
.61241
.2635

.97993
.74279

LW, R, e N

10.1321
9.04878
.93715
.44371
.04269
.70731

Oy =)~ )

.17961

.249312
.318307
.349931
.376574
.398715

1066
1566
2366
2866
3366
3866

.936678
.13529
.39547
.53585
.66444
.78379

[ W Y

49.0105
69.5855
90.3948
98.8631
104.759
108.502

56.2317
107.566
197.243
257.632
320.894
386.718

.554935



.661474
1.1328
1.80177
2,1918
2.56871

o o o > T T S T " T S S T R A S S O S D S 0T S S O

.762598
1.22222
1.88103
2.26811
2.64282

.859706

1.
1.
2,
2.

39315
95962
34393
71654

.953696

1.
2.
2.
2.

56429
03759
41929
7899

NS IS G o

. 04517
.72178
.11497
.49421
.86291

0 -1.11022e-16 1.11022e-16 1.11022e-16 -2.22045e-16
2.22045e-16 -6.66134e-16 4.44089%e-16 5.55112e-16 -8.88178e-16
-4.44089%e-16 4.4408%e-16 4.,4408%e-16 -2.22045e-16 -6.66134e-16
8.88178e-16 6.66134e-16 4.44089%e-16 4.44089%e-16 -8.88178e-16
8.88178e-16 0 0 0 4.44089%e-16
-8.88178e-16 -4.44089%-16 0 -4.,4408%e-16 4.4408%e-16
In-plane Tens Strain in Critical Ply, STRAINX, micro in
1513.11 2753.22 3562.89 3630.13 3990.42
4321.6 4630.63 4921.8 5197.97 5461.19
5708.03 5954.46 6410.24 6846.45 7230.3
7418.9 7601.63 7778.75 7950.51 8117.15
8278.86 8435.82 8588.22 8736.2 8879.92
9019.5 9155.07 9286.76 9414.66 9538.88
In-plane Comp Strain in Critical Ply, STRAINy, micro in.
-1213.27 -1339.57 -1514.1 -1530.94 ~1626.63
-1722.31 -1817.99 -1913.68 -2009.36 -2105.05
-2198.82 -2296.41 -2487.78 -2684.89 -2870.52
-2966.2 -3061.89 -3157.57 -3253.25 -3348.94
-3444.62 -3540.3 -3635.99 -3731.67 -3827.36
-3923.04 -4018.72 -4114.41 -4210.09 -4305.78
In-plane Tens Stress in Critical Ply, SIGxTOE, 1b/sq in.
1426.08 2992.93 3973.71 4054.08 4482.25
4872.27 5233.28 5570.89 5888.85 6189.83
6470.24 6748.36 7257.75 7738.87 8156.67
8359.89 8555.42 8743.6 8924.77 9099.21
9267.2 9428.98 9584.77 9734.77 9879.19
10018.2 10151.9 10280.6 10404.3 10523.2
Peel Stress at Toe, SIGzTOE, 1lb/sq in.
490,27 1325.93 1844.36 1887.05 2115.29
2324.62 2519.82 2703.78 2878.42 3045.08
3201.65 3358.27 3648.93 3928.59 - 4176.1
4298.26 4417.01 4532.5 4644.89 4754.31
4860.89 4964.74 5065.97 5164.67 5260.92
5354.8 5446.4 5535.78 5623. 5708.13
Shear Lag Stress at Toe, TAUxzTOE, 1b/sq in.
904.166 998.291 1128.35 1140.9 1212.21
1283.52 1354.82 1426.13 1497.44 1568.74
1638.62 1711.36 1853.97 2000.86 2139.19
2210.5 2281.81 2353.11 2424.42 2495.73
2567.03 2638.34 2709.65 2780.95 2852.26
2923.57 2994.87 3066.18 3137.48 3208.79
Maximum Princ1pa1 Tensile Stress Under Toe, SIGmptTOE, lb/sqg in.
1976.24 3459.93 4460.39 4543.99 4992.9
5406.77 5793.91 6159.45 6506.84 6838.56
7150.25 7462.03 8040.44 8596.52 9088.26
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9330.83 9566.51 9795.66 10018.6 10235.6
10446.9 10652.8 10853.4 11049. 11239.9
11426. 11607.7 11785. 11958.1 12127.2

M-11



M.3 SNAPPS Output for Panel Bl

EEEEEEEEEEEEEEEEEE85E6688688688565688688866855854686686G556EEEE&ELE&ESEEE
L&&EEEEEEG&&ELES SNAPPS ANALYSIS OF PANEL Bl §&EEEEELELEEEES
LE&EEEELEELEEEEEE (Version 1.0, April 1997) §&ELEEEEE&EESSS
EEEEEE6666E8668886668665688668865888888888658666666665G8G4EEEEEELEELES

dkhkhkhkhhkdkhkhkhkkhkkhkhdhhhkhkhkhkhkhkkkhhrhkhkddhkkhkkdkrkhkhdkhhkhhikk

Xkkkkkkkkkkk* ECHO SELECTED INPUT  kxkkkkxkdkkxxk
dhkkkhhkhhhhhdhhkhhkkhkkkkkkkhhhkhhkkhkdkkhhhkkhdhrkkk

Initial Buckling Shear Flow, qcr 302 1b/in.
Toe-to-Toe Width of Skin, btt 9.5 in.
Flange Width (normal to stiff dir.), Lf .75 in.
Thickness of Flange, tf .0576 in.
Thickness of Skin, ts .0848 in.
Thickness of Core, tc .04 in.
Thickness of Adhesive, ta .008 in.

Shear Stiff of Skin relative to global axes, Gt 141800 1b
Memb Stiff of Flange in dir of DT fold, Etfr 408000 1b

Memb Stiff of Skin in dir of DT fold, Etsr 370200 1b
Bend Stiff of Flange in dir of DT fold, Dfr 132.5 1b-in.
Bend Stiff of Skin in dir of DT fold, Dsr 479.9 1lb-in.

khkkhdkhkhkhkhhkhhhkhkhkhhkdkhkhkhkhhhkhkhhhkhkhkhkhkkhkkrhkhhkdhhkhkkkk

*k**k*x*%%x SELECTED SCALAR OUTPUT RESULTS Ak kokkkk

*%x%%x** (Quantities That Don't Vary with g)*****x*=x
khkkhkkkkdkhkhkhkhkhkrhhhkhkhkhhkhhdhkrhkhhkkkhkhhkrkkhhhhkkhrhihkix

Toe-to-toe Length of Diagonal Tension Fold 13.435 in.

Thickness of Face .0224 in.

Thru-Thickness Foundation Mcdulus 8.73141le+6 1lb/sqg in./in.
Interlaminar Shear Foundation Modulus 3.663e+6 1b/sq in./in.
Beta, Die-away Rate for Flatwise Tensile Stress 12.0413 1/in.

K, Parameter in Kuhn Shear-lag Analysis 4,34426 1/in.

kkhkhkkhkkdkhhkhkhhkhkbhkhkrhkhdkkdhhhhrdhdhhkkkhkkhkhhkhhhhkhhkkxk

x*x*x**x*%x SELECTED MATRIX OUTPUT RESULTS falalalalala et

**k**%*%x (Quantitles That Vary with q) * k& K %k ok kK
**************************************************

302 325 350 375 400
425 451.14 500 550 600
650 700 735 750 800
838 850 900 950 1000
1050 1100 1150 1200 1250
1300 1350 1400 1450 1500

Ratio of Applied Shear Flow to its Critical Value, g/gcr

— - ———— ——— P - ——— - —— - — - — -

1 1.07616 1.15894 1.24172 1.3245
1.40728 1.49384 1.65563 1.82119 1.98675
2.15232 2.31788 2.43377 2.48344 2.64901
2.77483 2.81457 2.98013 3.1457 3.31126
3.47682 3.64238 3.80795 3.97351 4.13907
4.30464 4.4702 4.63576 4.80132 4.96688

Transverse Width of Buckle, ¢, in.
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7.66041
6.52883
5.54656
5.09874
4.60634
4.24519

Buckle Wavelength (projected along stiffener), Lb, in.

11.6351
9.9146

8.25808
7.42745
6.76456
6.19136

11.2229
9.65626
8.00551
7.38373
6.63545
6.09506

10.8335
9.23315
7.84402
7.21071
6.51435
6.00361

.181968
.27934
.32878
.370659
.409602

8.37181e-2
.197745
.29413
. 331461
.379176
.41646

.118825
.222798
.303681
.34217M
.387291
.423069

Axial Load in Tie-Rod model,N1,1b/in.

998

1374
1798
2298

.793283
1.0686

1.44208
1.69207
1.93562
2.18826

.851558
1.11841
1.51261
1.70678
1.98872
2.23537

Skin Bending Moment at Toe, Mtoe,

42.1723
42,4026

.910681
1.20601
1.56008
1.76677
2.04043
2.2815

in.-1b/in.

.144207
.244298
.307598
.35222

.395045
.429448

448
798
1198
1598
2098
2598

. 966192
1.28951
1.57999
1.82479
2.09087
2.32672

16.8592
29.2109
36.9913
41.1247
42.6866
41.1389

Transverse Shear Force in Skin at Toe, Wtoe, 1lb/in.

.644616
28.2997
73.0605
114.79¢6
165.7

230.017

9.25799
33.1951
83.8079
117.576
178.219
243.367

19.0492
52.4168
94.8189
141.23

203.786
270.512

————————— - — - — ————— T — > T W T —— — ——— Y ——— ——— -

~.292593

5.80309e-2

.221353

M-13

.352984

.20381
.0397
.35425
.88092
.4498
.12502

b b U1 OY N

10.1877
.54143
.57205
.90266
.29297
.83367

oy oy~d 0O

.164648
.262892
.319982
.361693
. 402472
.435615

498
898
1298
1698
2198
2698

.01868
.36793
. 64461
.88102
.14012
.37108

[N N ST

19.2241
31.5974
38.3118
41.7243
42.6035
40.5107

23.6685
62.5919
106.079
153.368
216.821
284.298

.470019



.578464
1.40751
2.02249
2.67903
3.42151

.685752
1.57519
2.06052
2.82988
3.56685

.875172
1.69058
2.21772
2.97947
3.71128

.05896
. 73959
.37309
.12788
.85486

WWN K

.23581
.90124
.52681
.27521
.99762

WwoHHEH

Compat. Check: Tie~-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg.

-3.88578e-16
-6.66134e-16
2.22045e-16
4.4408%e-16

micro in.

1b/sq in.

-1.11022e-16 -6.45317e-16 -1.38778e-16
1.11022e-16 -3.33067e-16 -8.88178e-16
2.22045e-16 ~4.44089%e-16 0

-4.4408%e-16 0 0

-1.33227e-15 0 8.88178e-16

-4.44089%e-16 -8.88178e-16 8.88178e-16
In-plane Tens Strain in Critical Ply, STRAINX,
1308.15 2069.64 2476.62
3380.55 3645.1 4098. 44
5265.46 5599.63 5820.49
6415.65 6480.13 6738.84
7427.37 7630.57 7821.77
8329. 8477.52 8616.44
In-plane Comp Strain in Critical Ply, STRAINy,

-1064.59 -1145.66 -1233.79

-1498.18 -1590.32 -1762.56

-2291.33 -2467.59 -2590.96

-2954.05 -2996.35 -3172.61

-3701.38 -3877.63 -4053.89

-4582.66 -4758.91 -4935.17

In-plane Tens Stress in Critical Ply, SIGXTOE,
1225.72 2186.24 2679.04
3742.12 4046.46 4561.44
5847.97 6204.96 6437.76
7051.02 7116.11 7374.24
8033.86 8219.26 8388.95
8811.04 8924.81 9025.99

Peel Stress at Toe,

SIGzTOE, 1lb/sq in.

902.069
1906.54
3086.64
3603.6

4262.79
4729.93

Shear Lag Stress at Toe,

- — o - —  — — — ——— 0 Y W o W W WD S W S W ——

687.847
967.997
1480.47
1908.66
2391.52
2960.93

Maximum Principal Tensile Stress Under Toe, SIGmptTOE, 1b/sqg in.

e - ——— - T - ——— T T o T S S - S S A W e S M S S M e o =

1605.58
4133.97
6461.36

740.233
1027.53
1594.35
1935.99
2505.4

3074.81

2524.06
4459.96
6875.81

1170.22
2184.61
3217.17
3753.64
4369.98
4804.17

TAUxzTOE, lb/sqg in.

797.174
1138.82
1674.06
2049.88
2619.29
3188.69

3022.18
5019.
7150.29

M-14

1385.13
2440.4

3271.15
3893.97
4469.97
4872.61

854.115
1252.7

1708.23
2163.76
2733.17
3302.58

3433.48
5538.93
7264.29

-6.10623e-16
6.66134e-16
8.88178e-16
4.4408%e-16
0
0

3108.53
4906.76
6205.02
7211.53
8170.5

8866.87

-1410.05
-2115.07
-2820.1
-3525.12
-4406.4
-5287.68

3426.13
5458.84
6836.48
7831.9
8684.2
9192.45

1572.78
2673.57
3443.09
4025.24
4563.09
4935.44

911.056
1366.58
1822.11
2277.64
2847.05
3416.46

3798.98

7629.54



7892.96 7973.76 8298.75 8605.99 8896.79
9172.23 9433.28 9680.78 9815.51 10138.1
10349.2 10549.4 10739.2 10918. 11089.2
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M.4 SNAPPS Output for Panel Cl

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
E8666LEEEGEEEEE&E SNAPPS ANALYSIS OF PANEL Cl &&E&EGLELGLSE&ES
LEE&LELEELESEEELE (Version 1.0, April 1997) L&&EGEEEE&LE&EE
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

**************************************************

xkkkkkkkkkkk*x ECHO SELECTED INPUT dhkkhkkkhkhkhkdkkkdkk
**************************************************

Initial Buckling Shear Flow, gcr 63.5 1lb/in.
Toe-to-Toe Width of Skin, btt 15.5 in.
Flange Width (normal to stiff dir.), Lf .75 in.
Thickness of Flange, tf .0432 in.
Thickness of Skin, ts .0648 in.
Thickness of Core, tc .02 in.
Thickness of Adhesive, ta .008 in.

Shear Stiff of Skin relative to global axes, Gt 138800 1lb
Memb Stiff of Flange in dir of DT fold, Etfr 345400 1b

Memb Stiff of Skin in dir of DT fold, Etsr 362600 1b
Bend Stiff of Flange in dir of DT fold, Dfr 58.5 1b-in.
Bend Stiff of Skin in dir of DT fold, Dsr 249 1b-in.

**************************************************

x*x%*%*x%* SELECTED SCALAR OUTPUT RESULTS ookl

xxx*x*x** (Quantities That Don't Vary with qg)******=
**************************************************

Toe-to-toe Length of Diagonal Tension Fold 21.9203 in.

Thickness of Face .0224 in.

Thru-Thickness Foundation Modulus 1.19455e+7 1lb/sq in./in.
Interlaminar Shear Foundation Modulus 5.12601e+6 1lb/sqg in./in.

Beta, Die-away Rate for Flatwise Tensile Stress 15.8456 1/in.
K, Parameter in Kuhn Shear-lag Analysis 5.38309 1/in.

**************************************************

*x*%*%*%x%x SELECTED MATRIX OUTPUT RESULTS Frxkkk kX

% ok ok ok ok ok (Quantities That Vary with q) %k Kok kok ok ok
**************************************************

Applied Shear Flow, q, 1lb/in.

63.5 70 75 80 85
90 95 100 150 200
250 300 350 400 467.8
500 550 600 650 700
750 800 850 900 950
962 1000 1050 1100 1199

Ratio of Applied Shear Flow to its Critical Vvalue, g/qcr

1 1.10236 1.1811 1.25984 1.33858
1.41732 1.49606 1.5748 2.3622 3.14961
3.93701 4.72441 5.51181 6.29921 7.36693
7.87402 8.66142 9.44882 10.2362 11.0236
11.811 12.5984 13.3858 14.1732 14.9606
15.1496 15.748 16.5354 17.3228 18.8819

Transverse Width of Buckle, ¢, in.
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13.4234
11.4024
7.41248
5.54649
4.66393
4.18639

Buckle Wavelength (projected along

12.7988
11.1332
6.87201
5.32658
4.53567
4.11614

18.9835
16.1254
10.4828
7.84393
6.59579
5.92045

Maximum QOut-of-Plane Displacement of Skin,

18.1003
15.7447
9.71849
7.53292
6.41441
5.8211

.139069
.297461
.39365

.452694
.490668

.072971
.149821
.322527
.407263
.462398
.496715

Axial Load in Tie-Rod model, N1, 1lb/in.

.504995
. 684011
1.32401
1.93934
2.40189
2.73348

Skin Bending Moment at Toe,

.554282
.712764
1.46786
2.04026
2.48409
2.78875

.288823
3.73731
10.5862
14.3305
14.056

11.7008

Transverse Shear Force in Skin at Toe,

1.88333
4.09503
11.7862
14.5351
13.6552
11.109

——————————— T — —— = ——— > —————————— T = o

4.13938e-2

2.85761
20.126
54.8888
95.214
132.511

1.06996
3.30313
26.4885
62.582

103.781
139.449

12.3881 12.0241
10.8861 9.16312
6.44424 6.09372
5.13268 4.95991
4.41808 4.3097
4.02916 3.94777
stiffener), Lb, in.
17.5195 17.0046
15.3953 12.9586
9.11354 8.61783
7.2587 7.01437
6.2481 6.09484
5.6981 5.58299
Delta,in.
9.54906e~-2 .112688
.159475 .225236
.343761 .362279
.419822 .431499
.471601 .480358
.504388 .511764
86.5 96.5
136.5 236.5
636.5 736.5
1136.5 1236.5
1636.5 1736.5
2036.5 2136.5
1/in
.589398 .622535
.7404 .97457¢6
1.59882 1.71983
2.13641 2.22842
2.56365 2.64081
2.85985 2.92922
in.-1b/in.
2.4554 2.93106
4.43131 7.10387
12.7255 13.4448
14.5998 14.5356
13.1552 12.5611
10.2588 9.33037
Wtoe, 1b/in.
1.53571 1.97858
3.75489 8.65248
33.1825 40.1669
70.4739 78.5507
112.495 121.349
148.685 158.04

Rotation at End of Tie-rod Model, ThetaTierodDeg, deg.

-9.42543e-2 1.8523%e-2 5. 86234e 2 9.13684e-2

M-17

11.6977
.13046
.70489
.8046

.20938
.80088

W b b 1 o

16.543

11.4982
8.06794
6.79473
5.95296
5.37525

.126875
.266522
.384224
.442422
.488717
.525587

106.5
336.5
872.1
1336.5
1836.5
2334.5

653996
.1625

.87147
.31678
.71579
.06194

WRNN .

3.35245
9.06279
14.1185
14,3518
11.8777
7.27322

2.41703
14.1524
50.047

86.8008
130.335
176.892

.120798



.148156
.801965
1.65782
2.45109
3.09582

.174078
. 981229
1.82012
2,60509
3.2093

.198939
1.15552
1.9804

2.75783
3.35776

.41893
1.32595
2.13888
2.9094
3.5053

.615842
1.5521

2.29573
3.05986
3.79489

Compat. Check: Tie-rod Rotation-Skin/flange Rotation, DeltaThetaDeg, deg.

0 -1.07553e-16 6.93889%e-18 -1.66533e-16 1.52656e-16
-3.60822e-16 1.11022e-16 -4.44089%e-16 5.55112e-17 5.55112e-16
-1.11022e-16 -9.99201e-16 0 0 -8.88178e-16

0 -4.44089%e-16 -6.66134e-16 0 8.88178e-16

0 -4.44089%e-16 -4.,44089%e-16 4.,44089%e-16 0
-8.88178e-16 -4.44089%e-16 8.88178e-16 0 0

In-plane Tens Strain in Critical Ply, STRAINx, micro in.

266.294 497.183 589.63 669.532 742.373

810.459 875.015 936.781 1464.62 1899.61

2277.93 2614.16 2916.47 3190.14 3522.02

3665.57 3872.29 4060.8 4232.53 4388.69

4530.3 4658.23 4773.26 4876.05 4967.21

4987.42 5047.28 5116.73 5176.01 5264.91

In-plane Comp Strain in Critical Ply, STRAINy, micro in.

-228.712 -252.124 -270.132 -288.141 -306.15
-324.159 ~342.168 -360.177 -540.265 -720.353
-900.441 -1080.53 -1260.62 -1440.71 -1684.91
-1800.88 -1980.97 -2161.06 -2341.15 -2521.24
-2701.32 -2881.41 -3061.5 -3241.59 -3421.68
-3464.9 -3601.77 -3781.85 -3961.94 ~4318.52
In-plane Tens Stress in Critical Ply, SIGXTOE, 1lb/sqg in.

244.014 535.784 648.647 745.076 832.251

913.198 989.52 1062.19 1671.17 2158.5

2571.58 2929.52 3243.02 3519. 3841.84

3976.74 4164.99 4329.39 4471.81 4593.83

4696.77 4781.81 4849.93 4902.02 4938.88

4945.53 4961.2 4969.61 4964.7 4917.66
Peel Stress at Toe, SIGzTOE, lb/sq in.

77.9546 241.615 303.021 355.08 401.926

445,295 486.102 524.898 849.204 1108.97

1329.98 1522.44 1691.99 1842.27 2019.72

2094.57 2199.96 2293.18 2375.2 2446.83

2508.76 2561.58 2605.81 - 2641.89 2670.24

2675.93 2691.21 2705.13 2712.29 2707.55
Shear Lag Stress at Toe, TAUxzTOE, 1lb/sq in.

166,761 183.831 196.962 210.092 223.223

236.354 249,485 262.616 393,923 525.231

656.539 787.847 919.155 1050.46 1228.52

1313.08 1444.39 1575.69 1707. 1838.31

1969.62 2100.92 2232.23 2363.54 2494.85

2526.36 2626.16 2757.46 2888.77 3148.76
Maximum Principal Tensile Stress Under Toe, SIGmptTOE, lb/sqg in.

347.272 624.13 737.862 836.719 927.127

1011.81 1092.21 1169.22 1829.47 2376.19

2854.35 3282.24 3670.12 4024.63 4460.25
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4651.14 4929.35 5187.27 5426.7 5649.13
5855.82 6047.87 6226.24 6391.76 6545.17
6580.26 6687.13 6818.24 6939.04 7149.65
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